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Abstract: Left-handers comprise approximately 15% of
professional tennis players, but only 11% of the general
population. In boxing, baseball, fencing, table-tennis and
specialist batting positions in cricket the contrast is even
starker, with 30% or more of top players often being left-
handed. In this paper we propose a model for identifying
the advantage of being left-handed in one-on-one interac-
tive sports (as well as the inherent skill of each player). We
construct a Bayesian latent ability model in the spirit of
the classic Glicko model but with the additional compli-
cation of having a latent factor, i.e. the advantage of left-
handedness, that we need to estimate. Inference is further
complicated by the truncated nature of data-sets that arise
from only having data of the top players. We show how
to infer the advantage of left-handedness when only the
proportion of top left-handed players is available. We use
this result to develop a simple dynamicmodel for inferring
how the advantage of left-handedness varies through time.
We also extend the model to cases where we have ranking
or match-play data. We test these models on 2014 match-
play data from top male professional tennis players, and
the dynamic model on data from 1985 to 2016.

Keywords: Bayesian; latent ability models; left-
handedness.

1 Introduction and related
literature

In this paper we investigate the extent to which being
left-handed impacts elite performance and rankings in
one-on-one interactive sports such as tennis, fencing, bad-
minton etc. Our goal is to provide a coherent framework for
measuring the benefit of being left-handed in these sports
and tracking how this benefit evolves over time. We also
aim to provide a framework for considering such ques-
tions as “who are the most talented players?” Of course
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for this latter question to be reasonable it must be the case
that the lefty advantage (to the extent that it exists) can be
decoupled from the notion of “talent.” Indeed it’s not at
all clear that such a decoupling exists.

1.1 Causes and extent of the lefty advantage

In fact much of the early research into the performance
of left-handers in sports relied on the so-called “innate
superiority hypothesis” (ISH), where left-handers were
said to have an edge in sporting competitions due to
inherent neurological advantages associated with being
left-handed (Geschwind and Galaburda 1985; Nass and
Gazzaniga 1987). The presence of larger right hemispheric
brain regions associated with visual and spatial func-
tions, a lack of lateralization, and a larger corpus callosum
(Witelson 1985) (the brain structure involved in communi-
cation across hemispheres) were all suggested as neuro-
logical mechanisms for this edge. Applications of the ISH
to sport occurred primarily in fencing (Bisiacchi et al. 1985;
Taddei, Viggiano, and Mecacci 1991; Akpinar et al. 2015),
where left-handers appeared to have advantages in atten-
tional tasks (in terms of response to visual stimuli), though
there were also proponents for this view in other sports
such as tennis (Holtzen 2000).

The idea that an innate advantage was responsible for
the significant over-representation of left-handers in pro-
fessional sports gradually lost momentum following the
works of (Wood and Aggleton 1989; Aggleton and Wood
1990; Grouios et al. 2000a). These papers analyzed inter-
active sports such as tennis and non-interactive sports
such as darts and pool. They found there was a surplus
of left-handers in the interactive sports, but not gener-
ally in the non-interactive sports. (One exception is golf
where Loffing and Hagemann (2016, Box 12.1) noted that
the proportion of top left-handed¹ golfers is higher than in
the general population.) It was reasoned that any innate
superiority should also bring left-handers into promi-
nence in non-interactive sports and so alternative expla-
nations were sought. The primary argument of (Wood and
Aggleton 1989; Aggleton and Wood 1990) was that the

1 It should be noted, however, that most of these left-handed golfers
play right-handed and so being left-handed and playing left-handed
are not the same.

Unauthenticated
Download Date | 7/22/19 5:31 PM

mailto:martin.b.haugh@gmail.com
mailto:ff2316@columbia.edu


2 | F. Fagan et al.: The advantage of lefties in one-on-one sports

prominence of left-handers in a given sport was due to the
strategic advantages of being left-handed in that sport.

Indeed the prevailing² explanation today for the
over-representation of left-handers in professional inter-
active sports is the negative frequency-dependent selec-
tion (NFDS) effect. This effect is also assumed to underlie
the so-called “fighting hypothesis” (Raymond et al. 1996)
which explainswhy there is long-lasting handedness poly-
morphism in humans despite the fitness costs that appear
to be associated with left-handedness. The NFDS effect
is best summarized as stating that right-handed players
have less familiarity competing against left-handed play-
ers (because of the much smaller percentage of lefties in
the population) and therefore perform relatively poorly
against them as a result. Key evidence supporting this
hypothesis was the demonstration ofmechanisms for how
NFDS effectsmight arise (Daems andVerfaillie 1999; Stone
1999; Grossman et al. 2000; Grouios et al. 2000b). The dif-
ficulty of playing elite left-handed players in one-on-one
interactive sports has long been recognized. For example,
Breznik (2013) quotes Monica Seleš, the former women’s
world number one tennis player:

“It’s strange to play a lefty (most players are right-handed)
because everything is opposite and it takes a while to get used to
the switch. By the time I feel comfortable, the match is usually
over.”

A more general overview and discussion of NFDS effects
can be found in the recent book chapter of Loffing and
Hagemann (2016) who also provide extensive statistics
regarding the percentage of top lefties across various
sports. It is also perhaps worthmentioning that the debate
between the ISH and the NFDSmechanism is not quite set-
tled and some research, e.g. (Gursoy 2009) in boxing and
(Breznik 2013) in tennis, still argue that the ISH has a role
to play.

Recent analyses of combat sports (such as judo
(Sterkowicz, Lech, and Blecharz 2010), mixed martial arts
(Dochtermann, Gienger, and Zappettini 2014), and box-
ing (Loffing and Hagemann 2015)) also support the exis-
tence of NFDS effects on performance, although they sug-
gest that alternative explanations must still be considered
and that the resulting advantage is small. This agrees with
(Loffing, Hagemann, and Strauss, 2012a) which suggests
that although left-handedness provides an advantage,

2 We do note, however, that there are other hypotheses for explain-
ing the high proportion of lefties in elite sports. They include higher
testosterone levels, personality traits, psychological advantages and
early childhood selection. See (Loffing and Hagemann 2016) and the
references therein.

modern professionalism and training are acting to counter
the advantage. Deliberate training was shown in (Schorer
et al. 2012) to improve the performance of handball goalies
against players of specific handedness while (Ullén, Ham-
brick, and Mosing 2016) explores the issue of deliberate
training vs innate talent in depth. A recent article (Liew
2015) in the Telegraph newspaper in the UK, for example,
noted how seven of the first seventeen Wimbledon cham-
pions in the open era were left-handed men while there
were only two left-handers among the top 32 seeds in the
2015 tournament. Some of this variation is undoubtedly
noise (see Section 6) but there do appear to be trends in
the value of left-handedness. For example, the same Tele-
graph article noted that a reverse effect might be taking
place inwomen’s tennis. Specifically, the article noted that
2015 was the first time in the history of the WTA tour that
there were four left-handed women among the top 10 in
tennis. In most sports the lefty advantage appears to be
weaker in women than in men (Loffing and Hagemann
2016). The issue of gender effects of handedness in pro-
fessional tennis is discussed in (Breznik 2013) where it is
shown through descriptive statistics and a PageRank-style
analysis that women do indeed have a smaller lefty advan-
tage than men although it’s worth noting their data only
extends to 2011. It is also suggested in (Breznik 2013) that
the lefty advantage in tennis isweaker inGrandSlams than
on theATP andChallenger tours. They conjecture that pos-
sible explanations for this are that the very best players are
more able to adjust to playing lefties and they may also be
in a better position to tailor their training in anticipation
of playing lefties.

Many other researchers have studied the extent of
the leftie advantage and how it might arise. For exam-
ple, (Goldstein and Young 1996) determines a game the-
oretic evolutionary stable strategy from payoff matrices of
summarized performance, whereas (Billiard, Faurie, and
Raymond 2005) explicitly uses frequency dependent inter-
actions between left- and right-handed competitors. The
work of Abrams and Panaggio (2012) has some similar-
ity to ours as they also model professionals as being the
top performers from a general population skill distribu-
tion. They use differential equations to define an equilib-
rium of transitions between left- and right-handed popu-
lations. These papers rely then on the NFDS mechanism
to generate the lefty advantage. We note that equilibrium-
style models suggest the strength of the lefty advantage
might be inversely proportional to the proportion of top
lefties. Such behavior is not a feature of our modeling
framework but nor is it inconsistent with it as we do not
model the NFDS mechanism (and resulting equilibrium).
Instead our main goal is to measure the size of the lefty
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advantage rather than building a model that leads to this
advantage.

Several researchers have considered how the lefty
advantage has evolved with time. In addition to their
aforementioned contributions, (Breznik 2013) also plot the
mean rank of top lefties and righties over time in tennis
and they obtain broadly similar results to those obtained
by our Kalman filtering approach. Other researchers have
also analyzed the proportion of top lefties in tennis
over time. For example, (Loffing, Hagemann, and Strauss
2012b) fit linear and quadratic functions to the data and
then extrapolate to draw conclusions on future trends.
Their quadratic fit for the proportion of lefties inmen’s ten-
nis uses data from 1970 to 2010 and predicts a downwards
trend from 1990 onwards. This is contradicted by our data
from 2010 to 2015 in Section 6 which suggests that the
number of top lefties may have been increasing in recent
years. They also perform a separate analysis for amateur
players, showing that the lefty advantage increases as the
quality of players improves. It is also worth noting that
Ghirlanda, Frasnelli, and Vallortigara (2009) introduce a
model suggesting the possibility of the lefty advantage
remaining stable over time.

1.2 Latent ability and competition models

Our work in this paper builds on the extensive³ latent
ability and competition models literature. The origi-
nal two competition models are the Bradley-Terry-Luce
(BTL) model (Bradley and Terry 1952; Luce 1959) and
the Thurstone-Mosteller (TM) model (Thurstone 1927;
Mosteller 1951). BTL assumes each player i has skill Si, so
that the probability of player i beating player j is a logis-
tic function of the difference in skills. Specifically BTL
assumes

p(i ◁ j | Si , Sj) = 1
⧸︀ (︁

1 + e−(Si−Sj)
)︁

(1)

where i ◁ j denotes the event of i beating j. TM is defined
similarly, butwith the probability of i beating j being a pro-
bit function of the difference in their skills. Given match-
play data, the skill of each player may be inferred using
maximum likelihood estimation (MLE) where the proba-
bility of the match-play results is assumed to satisfy

p(M | S1, . . . , SN) =
∏︁
i<j

(︃
Tij
Mij

)︃
p(i ◁ j)Mij · p(j ◁ i)Mji (2)

3 See also the related literature on item response theory (IRT) from
psychometrics and the Rasch model (Fischer and Molenaar 2012)
which is closely related to the BTL model below.

where Mij is the number of matches where player i beats
player j, and Tij := Mij+Mji is the total number ofmatches
between players i and j. The inferred skills can then be
used to predict the outcome of future matches.

There are a few notable extensions to the BTL and TM
models including ELO (Elo 1978), Glicko (Glickman 1999)
and TrueSkillTM (Herbrich, Minka, and Graepel 2007). ELO
models the performance of each player in a match as hav-
ing a Gaussian distribution centered around their respec-
tive skill. Glicko and TrueSkillTM extend the ELO model
by putting a Gaussian prior on the skill of each player.
These models have been widely applied to various compe-
tition settings. For example, ELOwas developed as a chess
ranking system, and TrueSkillTM has been used for online
matchmaking for video games onXboxLive. Thesemodels
allow one to infer the skill level of each player and thereby
construct player rankings.

1.3 Contributions of this work

In this paper we propose a Bayesian latent ability model
for identifying the advantage of being left-handed in one-
on-one interactive sports but with the additional compli-
cation of having a latent factor, i.e. the advantage of left-
handedness, that we need to estimate. Inference is fur-
ther complicated by the truncated nature of data-sets that
arise from only observing data related to the top play-
ers. The resulting pattern of data “missingness” therefore
depends on the latent factor and so it is important that we
model it explicitly. We show how to infer the advantage
of left-handedness when only the proportion of top left-
handed players is available. In this case we show that the
distribution of the number of left-handed players among
the top n (out of N) converges as N → ∞ to a binomial
distribution with a success probability that depends on
the tail-length of the innate skill distribution. Since this
resultwould not be possible ifweused short- or long-tailed
skill distributions, we also argue for the use of a medium-
tailed distribution such as the Laplace distribution when
modeling the “innate”⁴ skills of players. We also use this
result to develop a simple Kalman filteringmodel for infer-
ring how the lefty advantage has varied through time in
a given sport. Our Kalman filter/smoother enables us to

4 Throughout this paper we will use the term “innate skill” to
refer to all components of a player’s “skill” apart from the advan-
tage/disadvantage associated with being left-handed. We acknowl-
edge that the term “innate” may be quite misleading – see the dis-
cussion below – but will continue with it nonetheless for want of a
better term.

Unauthenticated
Download Date | 7/22/19 5:31 PM



4 | F. Fagan et al.: The advantage of lefties in one-on-one sports

smooth any spurious signals over time and should lead to
amore robust inference regarding thedynamics of the lefty
advantage.

We also consider various extensions of our model. For
example, in order to estimate the innate skills of top play-
ers we consider the case when match-play data among
the top n players is available. This model is a direct gen-
eralization of the Glicko model described earlier. Unlike
other models, this extension learns simultaneously from
(i) the over-representation of lefties among top players
and (ii) match-play results between top lefties and right-
ies. Previously these phenomena were studied separately.
We observe that including match-play data in our model
makes little difference to the inference of the lefty advan-
tage and therefore helps justify our focus on the simpli-
fied model that only considers the proportion of lefties
in the top n players. This extension does help us to iden-
tify the innate skills of players, however, we acknowledge
that these so-called innate skills may only be of interest
to the extent that the NFDS mechanism is responsible for
the lefty advantage. (To the extent that the innate superior-
ity hypothesis holds, it’s hard to disentangle the notion of
innate skill or talent from the lefty advantage andusing the
phrase “innate skills” would be quite misleading in this
case.)

The remainder of this paper is organized as follows.
In Section 2 we describe our skill and handedness model
and also develop our main theoretical results here. In
Section 3we introducematch-play results among top play-
ers into the model while in Section 4 we consider a vari-
ation where we only know the handedness and external
rankings of the top players. We present numerical results
in Section 5 using data from men’s professional tennis in
2014. In Section 6 we propose a simple Kalman filtering
model for inferringhow the lefty advantage in agiven sport
varies through time and we conclude in Section 7 where
possible directions for future research are also outlined.
Various proofs and other technical details are deferred to
the appendix.

2 The latent skill and handedness
model

We assume there is a universe of N players and for i =
1, . . . , N wemodel the skill, Si, of the ith player as the sum
of his innate skill Gi and the lefty advantage L if he is in
fact left-handed. That is, we assume

Si = Gi + HiL

where Hi is the handedness indicator with Hi = 1 if the
player is left-handedandHi = 0otherwise. The generative
framework of our model is:
– Left-handed advantage: L ∼ N(0, σ2L) where σL is

assumed to be large and N denotes the normal distri-
bution.

– For players i = 1, 2, . . . , N
– Handedness: Hi ∼ Bernoulli(q) where q is the

proportion of left-handers in the overall popula-
tion.

– Innate skill: Gi ∼ G for some given distribution G

– Skill: Si = Gi + HiL.

The joint probability distribution corresponding to the
generative model then satisfies

p(S, L, H) = p(L)
N∏︁
i=1

p (Hi) p(Si | Hi , L) (3)

where we note again that N is the number⁵ of players in
our population universe. We assume we know (from pub-
lic results of professional competitions etc.) the identity of
the top n < N players as well as the handedness, i.e. left
or right, of each of them. Without loss of generality, we let
these top n players have indices in {1, . . . , n} and define
the corresponding event

Topn,N :=
{︂

min
i=1,...,n

{Si} ≥ max
i=n+1,...,N

{Si}
}︂
. (4)

Note, however, that even when we condition on Topn,N ,
the indices in {1, . . . , n} are not ordered according to
player ranking so for example it is possible that S1 < S2
or Sn < S3 etc.

2.1 Medium-tailed priors for the innate skill
distribution

Thus far we have not specified the distribution G from
which the innate skill levels are drawn in the generative
model. Here we provide support for the use of medium-
tailed distributions such as the Laplace distribution for
modeling these skill levels. We do this by investigating

5 We have in mind that N is the total number of players in the world
who can play at a good amateur level or above. In tennis, for exam-
ple, a goodamateur levelmight be the level of varsity players or strong
club players.N will obviously vary by sport but what we have inmind
is that the player level should be good enough to take advantage of
the left-handedness advantage (to the extent that it exists).
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the probability of top players being left-handed as the
population size N becomes infinitely large. Consider then

lim
N→∞

p(nl | L; n, N) (5)

where nl denotes the number of left-handers among the
top n players. For the skill distribution to be plausible,
the probability that top players are lefthanded should be
increasing in L and be consistent with what we observe
in practice for a given sport. Letting Binomial (x; n, p)
denote the probability of x successes in a Binomial (n, p)
distribution, we have the following result.

Proposition 1. Assume that g has support R. Then

lim
N→∞

p(nl | L; n, N) = Binomial
(︂
nl; n,

q
q + (1 − q)c(L)

)︂
(6)

where

c(L) := lim
s→∞

g(s)
g(s − L)

if the limit c(L) exists.

Proof. See Appendix A.1.

The function c(L) characterizes the tail length of the skill
distribution. If c(L) = 0 for all L > 0 as is the case for
example with the normal distribution, then g is said to
be short-tailed. In contrast, long-tailed distributions such
as the t distribution, have c(L) = 1 for all L ∈ R. If a
distribution is neither short- nor long-tailed, we say it is
medium-tailed.

If we use a short-tailed innate skill distribution
and L > 0, then c(L) = 0 and limN→∞ p(nl | L; n, N) =
Binomial (nl; n, 1). That is, if there is any advantage to
being left-handed and the population is sufficiently large,
then the top players will all be left-handed almost surely.
This property is clearly unrealistic even for sports with
a clear left-handed advantage such as fencing, since it
is not uncommon to have top ranked players that are
right-handed. This raises questions over the heavy use
of the short-tailed normal distribution in competition
models (Elo 1978; Glickman 1999; Herbrich et al. 2007)
and suggests⁶ that other skill distributions may be more
appropriate. As an alternative, consider a long-tailed dis-
tribution. In this case we have c(L) = 1 for all L ∈ R and

6 In defense of the normal distribution, we show in Appendix A.2
that a normally distributed G may in fact be a suitable choice if
N is not too large. Though p(H1 = 1 | L, S1 ≥ max{S2:N}) → 1 as
N → ∞ for normally distributed skills, the rate of convergence is only
1 − Ω

(︁
exp

(︁
−L

√︀
log N

)︁)︁
. This convergence is sufficiently slow for

the normal skill distribution to be somewhat reasonable formoderate

p(nl | L; n, N) → Binomial (nl; n, q) as N → ∞. This too is
undesirable, since the probability of a top player being
left-handed does not depend on L in the limit and agrees
with the probability of being left-handed in the general
population. As a consequence, such a distribution would
be unsatisfactory for modeling in those sports where we
typically see left-handers over-represented among the top
players.

We therefore argue that the ideal distribution for mod-
eling the innate skill distribution is a medium-tailed dis-
tribution such as the standard Laplace distribution which
has PDF

g(x) =
1
2b exp (−|x|/b) (7)

where b = 1/
√
2 is the standard scale parameter of the

distribution. It is easy to see in this case that c(L) =
exp(−L/b) and substituting this into (6) yields

lim
N→∞

p(nl | L; n, N)

= Binomial
(︂
nl; n,

q
q + (1 − q) exp(−L/b)

)︂
(8)

which is much more plausible. For very small values of L,
the probability of top players being left-handed is approx-
imately q which is what we would expect given the small
advantage of being left-handed. For large positive values
of L we see that the probability approaches 1 and for
intermediate positive values of L we see that the proba-
bility of top players being left handed lies in the interval
(q, 1). This of course is what we observe in many sports
such as fencing, table-tennis, tennis etc. For this reason,
we will restrict ourselves to medium-tailed distributions
and specifically the Laplace⁷ distribution for modeling the
innate skill levels in the remainder of this paper.

2.2 Large N inference using only aggregate
handedness data

Following the results of Proposition 1, we assume here
that we only know the number nl of the top n players who
are left-handed. We shall see later that only knowing nl
results in little loss of information regarding L compared
to the full information case of Section 3 where we have

values of N. However, the result of Proposition 1 suggests that a nor-
mal skill distribution would be inappropriate for very large values of
N.
7 We will use b = 1/

√
2 w.l.o.g. since alternative values of b could

be accommodated via changes in σL and σM .
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knowledge of the handedness and all match-play results
among the top n players. We shall make use of this obser-
vation in Section 6whenwe build amodel for inferring the
dynamics of L through time series observations of nl.

2.2.1 Posterior of L in an infinitely large population

Applying Bayes’ rule to (6) yields

lim
N→∞

p(L | nl; n, N)

∝ lim
N→∞

p(L)p(nl | L; n, N)

= p(L)Binomial
(︂
nl; n,

q
q + (1 − q) exp(−L/b)

)︂

= p(L)
(︃
n
nl

)︃ (︂
q

q + (1 − q) exp(−L/b)

)︂nl

(︂
1 − q

q + (1 − q) exp(−L/b)

)︂nr

∝ p(L)
(︂

1
q + (1 − q) exp(−L/b)

)︂nl

(︂
exp(−L/b)

q + (1 − q) exp(−L/b)

)︂nr

= p(L)
(︂

exp(nl/n · L/b)
q exp(L/b) + 1 − q

)︂n

(9)
where nr := n − nl is the number of top righthanded play-
ers, all factors independent of L were absorbed into the
constant of proportionality and the binomial distribution
term on the second line is nowwritten explicitly as a func-
tion of nl. We shall verify empirically in Section 5 that (9)
is a good approximation of p(L | nl; n, N) if the population
size N is large. As the number of top players n increases
while keeping nl/n fixed, the nth power in (9) causes the
distribution to becomemore peaked around itsmode. This
effect can be seen in Figure 1 where we have plotted the
r.h.s of (9) for different values of n. If n is sufficiently large
then the data will begin to overwhelm the prior on L and
the posterior will become dominated by the likelihood fac-
tor, i.e. the second term on the r.h.s. of (9). This likelihood
term achieves its maximum at

L* := b log
(︂

nl/n
1 − nl/n

· 1 − q
q

)︂
(10)

which we plot as the dashed vertical line in Figure 1. We
can clearly see from the figure that the density becomes
more peaked around L* as n increases while keeping nl/n

–1 –0.5 0 0.5 1 1.5 2

Figure 1: The value of limN→∞ p(L | nl; n, N) as given by the r.h.s.
of (9) for different values of n. We assume an N(0, 1) prior for p(L),
a value of q = 11% and we fixed nl/n = 25%. The dashed vertical
line corresponds to L* from (10) and the Laplace approximations are
from (11).

fixed. The value⁸ of L* provides an easy-to-calculate point
estimate of L for large values of n.

The bell-shaped posteriors in Figure 1 suggest that we
might be able to approximate the posterior of L as a Gaus-
sian distribution. This can be achieved by first approxi-
mating (9) as a Gaussian distribution over L via a Laplace
approximation (Barber 2012, Sec. 28.2) to the second term
on the r.h.s. of (9). Specifically, we set the mean of the
Laplace approximation equal to the mode, L*, of (6) and
then set the precision to the second derivative of the loga-
rithm evaluated at the mode. This yields:(︂

exp(nl/n · L/b)
q exp(L/b) + 1 − q

)︂n
∝∼ N

(︂
L; L*, b2 n

nrnl

)︂
(11)

Note that this use of the Laplace approximation is non-
standard as the left side of (11) is not a distribution over
L, but merely a function of L. However if 0 < nl < n then
the left side of (11) is a unimodal function of L and, up
to a constant of proportionality, is well approximated by
a Gaussian. We can then multiply the normal approxima-
tion in (11) by the other term, p(L), which is also Gaussian
to construct a final Gaussian approximation for the r.h.s. of
(9). This is demonstrated in Figure 1where (9) is plotted for
different values of n and where the likelihood factor was
set⁹ to the exact value of (6) or the Laplace approximation
of (11). It is evident from the figure that the Laplace approx-
imation is extremely accurate. This gives us the confidence
to use the Laplace approximation in Section 6 when we
build a dynamic model for L.

8 As a sanity check, suppose that nl/n = q. Then it follows from (10)
that L* = 0, as expected.
9 In each case, we normalized so that the function integrated to 1.
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2.3 Interpreting the posterior of L

In the aggregate data regime we do not know the posterior
distributions of the skills and thus cannot directly infer the
effect of left-handedness on match-play outcomes. How-
ever, we can still infer this effect in aggregate. As we shall
see, the relative ranking of left-handers is governed by
the value of L. In particular, if we continue to assume
the Laplace distribution for innate skills, then we show in
Appendix A.3 that for any fixed and finite value of L, the
difference in skills between players at quantiles λj and λi
satisfies

lim
N→∞

(︁
S[Nλj ] − S[Nλi ]

)︁
= b log(λi/λj) (12)

where the convergence is in probability and we use S[Nλi ]
to denote the [Nλi]th order statistic of S1, . . . , SN . Sup-
pose now¹⁰ that Nλi = x and Nλj = exp(−k/b)x. Assum-
ing (12) continues to hold approximately for large (but
finite) values of N it immediately follows that

S[Nλj ] − S[Nλi ] ≈ k. (13)

Consider now a left-handed player of rank x with innate
skill, G. All other things being equal, if this player was
instead right-handed then his skill would change from S =
G + L to S = G. This corresponds to a value of k = −L
and so that player’s ranking would therefore change from
x to exp(L/b)x which of course would correspond to an
inferior ranking for positive values of L. We can therefore
interpret the advantage of being left-handed as improv-
ing, i.e. lowering, one’s rank by a multiplicative factor of
exp(−L/b).

We canuse this result to infer the improvement in rank
for lefties due to their left-handedness in various sports
(Flatt 2008). We do so by substituting the fraction of top
players that are left-handed, nl/n, into (10) to obtain L*,
our point estimate of L. Following the preceding discus-
sion, the (multiplicative) change in rank due to going from
left-handed to right-handed can then be approximated by

exp(L*/b) =
nl

n − nl
· 1 − q

q (14)

which again follows from (10). It is important to interpret
(14) correctly. In particular, it represents the multiplica-
tive drop in rank if a particular left-handed player were
somehow to give up the advantage of being left-handed.
It does not represent his drop in rank if he and all other

10 There is a slight abuse of notationhere sincewefirst need to round
Nλi to the nearest integer.

left-handed players were to simultaneously give up the
advantage of being left-handed. In this latter case, thedrop
in rankwouldnot be as steep as that given in (14) since that
playerwould still remainhigher-ranked than theother left-
handed players who were below him in the original rank-
ing. In fact, we can argue that the approximate absolute
drop in ranking for a left-handed player of rank x when
all left-handers give up the benefit of being left-handed
is given by the number of right-handed players between
ranks x and exp(L/b)x

(1 − nl/n) × (x exp(L*/b) − x). (15)

We can argue for (15) by noting that on average a frac-
tion nl/n of the players between ranks x and x exp(L*/b)
will be left-handed and they will also fall and remain
ranked below the original player when the lefty advantage
is stripped away. Therefore the new rank of the left-handed
player originally ranked x will be

x + (1 − nl/n) × (x exp(L*/b) − x) (16)

when all left-handed players simultaneously give up the
advantage of being left-handed. Simplifying (16) using (14)
yields a new ranking of

nl
nq x.

We therefore refer to the r.h.s. of (14) and nl/(nq) as
Dropalone and Dropall, respectively. Results for various
sports are displayed in Table 1. For example, the table sug-
gests that left-handed table-tennis players would see their
ranking drop by a factor of approximately 2.91 if the advan-
tage of left-handedness could somehow be stripped away
from all of them.

These results, while pleasing, are not very surprising.
After all, a back-of-the-envelope calculation could come

Table 1: Proportion of left-handers in several interactive one-on-one
sports (Flatt 2008; Loflng and Hagemann 2016) with the relative
changes in rank under the Laplace distribution for innate skills with
q = 11%.

Sport Approx % left-handed Dropalone Dropall
(nl/n)

Tennis 15% 1.43 1.36
Badminton 23% 2.41 2.09
Fencing (épée) 30% 3.47 2.73
Table-tennis 32% 3.81 2.91

Dropalone = nl
n−nl

· 1−q
q represents the drop in rank for a left-hander

who alone gives up the advantage of being left-handed while
Dropall = nl

nq represents the drop in rank of a left-hander when all
left-handers give up the advantage of being left-handed.

Unauthenticated
Download Date | 7/22/19 5:31 PM



8 | F. Fagan et al.: The advantage of lefties in one-on-one sports

to a similar conclusion as follows. The proportion of top
table-tennis players who are left-handed is ≈ 32% but the
proportion¹¹ of left-handers in the general population is ≈
11%. Assuming the top left-handers are uniformly spaced
among the top right-handers, we would therefore need to
reduce the ranking of all left-handers in fencing by a factor
of ≈ 32/11 ≈ 2.91 = Dropall to ensure that the proportion
of top-ranked left-handed fencers matches the proportion
of left-handers in the general population.

While these results and specifically the interpretation
of exp(L*/b) described above are therefore not too surpris-
ing, we can and do interpret them as a form of model vali-
dation. In particular, they validate the choice of amedium-
tailed distribution to model the innate skill level of each
player. We note from Proposition 1 and the following dis-
cussion that itwouldnot bepossible to obtain these results
(in the limit as N → ∞) using either short- or long-tailed
distributions to model the innate skills.

3 Including match-play and
handedness data

Thus far we have not considered the possibility of using
match-play data among the top n players to infer the value
of L. In this section we extend our model in this direc-
tion so that L and the innate skills of the top n players
can be inferred simultaneously. We suspect (and indeed
this is confirmed in the numerical results of Section 5) that
inclusion of the match-play data adds little information
regarding the value of L over and beyond what we can
already infer from the basicmodel of Section 2. However, it
does in principle allow us to try and answer hypothetical
questions regarding the innate skills of players and win-
probabilities for players with and without the benefit of
left-handedness. We therefore extend our basic model as
follows:
– For each combination of players i < j

– Match-play results: Mij ∼ Binomial(Tij , p(i ◁ j |
Si , Sj ; σM))

where the probability that player i defeats player j is
defined according to

p(i ◁ j | Si , Sj; σM) :=
1

1 + e−σM(Si−Sj) . (17)

11 Note that the proportion of left-handers can vary from country
to country for various reasons including cultural factors etc. It is
therefore difficult to pin down exactly but a value ≈ 11% seems
reasonable.

In contrast with the win probability in (1), our win prob-
ability in (17) has a hyperparameter σM that we use to
adjust for the predictability of each sport. In less pre-
dictable sports, for example,weaker playerswill oftenbeat
stronger players and so evenwhen Si ≫ Sj we have p(i◁ j |
Si , Sj) ≈ 1/2. On the other hand, more predictable sports
would have a larger value of σM which accentuates the
effects of skill disparity. Having an appropriate σM allows
the model to fit the data much more accurately than if we
had simply set σM = 1 as is the case in BTL. It’s worth not-
ing that instead of scaling by σM in (17), we could have
scaled the skills themselves so that Si = σM(Gi +HiL) and
then used the win probability in (1). We decided against
this approach in order to keep the scale of L consistent
across sports.

3.1 The posterior distribution

The joint probability distribution corresponding to the
extended model now satisfies

p(S, L,M, H)

= p(L)
N∏︁
i=1

p (Hi) p(Si | Hi , L)
∏︁
i<j

p(Mij | Si , Sj). (18)

As before we condition on Topn,N so the posterior distribu-
tion of interest is then given by

p(S1:n , L | M1:n , H1:n , Topn,N) (19)

where Sa:b := (Sa , Sa+1, . . . , Sb), H1:n are their respec-
tive handedness indicators and M1:n denotes the match-
play results among the top n ranked players. Bayes’ rule
therefore implies

p(S1:n , L | M1:n , H1:n , Topn,N)
∝ p(S1:n , L,M1:n , H1:n , Topn,N)
= p(L) p(H1:n | L) p(S1:n | L, H1:n)
p(Topn,N | S1:n , L, H1:n)
× p(M1:n | S1:n , L, H1:n , Topn,N)

∝ p(L)
∏︁
i≤n

p(Si | L, Hi) p(Topn,N | S1:n , L)∏︁
i,j≤n

p(Mij | Si , Sj) (20)

where in the final line we have simplified the conditional
probabilities and dropped the p(H1:n | L) = p(H1:n) factor
since it is independent of S1:n and L. This last statement
follows because, as emphasized above, the first n players
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are not player rankings but are merely¹² player indicators
from the universe of N players. We know the form of p(L),
p(Si | L, Hi) and p(Mij | Si , Sj) from the generative model
but need to determine p(Topn,N | S1:n , L). The prior den-
sity on the skill of a player in the general population (using
the generative framework with Bernoulli(q) handedness)
satisfies

f (S | L) := p(S | L) = EH
[︀
p(S | H, L)

]︀
= qg(S − L) + (1 − q)g(S) (21)

where we recall that g denotes the PDF of the innate skill
distribution, G . Letting F(S | L) denote the CDF of the
density in (21), it follows that

p(Topn,N | S1:n , L)

=
N∏︁

i=n+1
p(Si ≤ min{S1:n} | S1:n , L)

= F(min{S1:n} | L)N−n .

We can now simplify (20) to obtain

p(S1:n , L | M1:n , H1:n , Topn,N)

∝ p(L)
n∏︁

i=1
g(Si − LHi) F(min{S1:n} | L)N−n

∏︁
i,j≤n

p(Mij | Si , Sj). (22)

3.2 Inference via MCMC

We use a Metropolis-Hastings (MH) algorithm to sample
from the posterior in (22). By virtue of working with the
random variables S1:n conditional on the event Topn,N ,
the algorithm will require taking skill samples that are
far into the tails of the skill prior, G . In order to facilitate
fast sampling from the correct region, we develop a tai-
lored approach for both the initialization and the proposal
distribution of the algorithm. The key to our approach
is to center and de-correlate the posterior distribution, a
process known as “whitening” (Murray and Adams 2010;
Barber 2012). This leads to good proposals in the MH sam-
pler and is also useful in setting the skill scaling hyper-
parameter, σM, as we discuss below. More specifically, we

12 It is only through the act of conditioning on Topn,N that we can
infer something about the rankings of these players.

will use a Gaussian proposal distribution with mean vec-
tor equal to the current state of the Markov chain and
covariance matrix, λ2Σ/n, where¹³ λ = 2.38 and Σ is an
approximation to the covariance of the posterior distribu-
tion. In the numerical results of Section 5, wewill runmul-
tiple chains in order to properly diagnose convergence to
stationarity using the well-known Gelman-Rubin ̂︀R diag-
nostics. Towards this end, the starting points of the chains
will be generated from an N(µ, γI) distribution where µ is
an approximation to the mean of the posterior distribu-
tion andwhere γ is set sufficiently large so as to ensure the
starting points are over-dispersed.

3.2.1 Approximating the mean and covariance of the
posterior

Theposterior of the skills S1:n canbeapproximatedby con-
sidering the posterior distribution of its order statistics,
S[1:n] := (S[1], S[2], . . . , S[n]), where S[i] is the ith largest of
S1:n. If we were to reorder the player indices so that the
index of each player equaled his rank, then we would
have S1:n = S[1:n]. Unfortunately we don’t a priori know
the ranks of the players. Indeed their ranks are uncer-
tain and will follow a distribution over permutations of
1, . . . , n that is dependent on the data. However, it is pos-
sible to construct a ranking of players that should have a
high posterior probability by running BTL on their match-
play results. If we order the player indices according to
their BTL ranks then we would expect

p(S1:n = s1:n , L | M1:n , H1:n , Topn,N)
≈ p(S[1:n] = s1:n , L | M[1:n], H[1:n]) (23)

where M[1:n], H[1:n] are the match-play results and hand-
edness of the now ordered top n players.

We can estimate the mean and covariance of the dis-
tribution given by (23) via Monte Carlo. First let us apply
Bayes’ rule to separate L, S[n] and S[1:n−1] and obtain

p(S[1:n], L | M[1:n], H[1:n])
= p(S[1:n−1] | S[n], L,M[1:n], H[1:n])
p(S[n] | L,M[1:n], H[1:n]) p(L | M[1:n], H[1:n]). (24)

We would like to jointly sample from this distribution
by first sampling L, then sampling S[n] conditional on L,

13 The value of λ = 2.38 is optimal under certain conditions; see
(Roberts and Rosenthal 2001). We also divide the covariance matrix
by the dimension, n, to help counteract the the curse of dimen-
sionality which makes proposing a good point more difficult as the
dimension of the state-space increases.
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and finally sampling S[1:n−1] conditional on both L and
S[n]. The empirical mean and covariance of such samples
would approximate the true mean and covariance of pos-
terior of L and S[1:n], which in turn would approximate the
mean and covariance of L and S1:n —our ultimate object of
interest. Unfortunately sampling from (24) is intractable,
but we can approximately sample from it as follows:
1. As discussed in Section 2.2, for large populations the

posterior of L can be approximated as

p(L | M[1:n], H[1:n])
∝∼ p(L)

(︂
exp(nl/n · L/b)

q exp(L/b) + 1 − q

)︂n
.

(25)
We can easily simulate from the distribution on the
r.h.s. of (25) by computing its CDF numerically and
then using the inverse transform approach. It can be
seen fromFigure 2 in Section 5 that this approximation
is very accurate for large N.

2. It is intractable to simulate S[n] directly according to
the conditional distribution on the r.h.s. of (24). It
seems reasonable to assume, however, that

p(S[n] | L,M[1:n], H[1:n]) ≈ p(S[n] | L), (26)

where we ignore the conditioning onM[1:n] and H[1:n].
As with L, we can use the inverse transform approach
to generate S[n] according to the distribution on the
r.h.s. of (26) by noting that its CDF is proportional to
(David and Nagaraja 2003, p. 12)

F(S[n] | L)
N−n(1 − F(S[n] | L))

n−1f (S[n] | L)

where f and F are as defined in (21) and the following
discussion.

3. Finally, we can handle the conditional distribution of
S[1:n−1] on the r.h.s. of (24) by assuming

p(S[1:n−1] | S[n], L,M[1:n], H[1:n]) ≈ p(S[1:n−1] | S[n], L)
(27)

where we again ignore the conditioning on M[1:n] and
H[1:n]. It is easy to simulate S[1:n−1] from the distribu-
tion on the r.h.s of (27). We do this by simply gener-
ating n − 1 samples from the distribution p(S | S >

S[n], L) = p(G+HL | G+HL > S[n], L) (a simple trun-
cated distribution) and then ordering the samples.

We can run steps 1 to 3 repeatedly to generate many sam-
ples of (S[1:n], L) and then use these samples to estimate
the mean, µ, and covariance matrix, Σ, of the true poste-
rior distribution of (S1:n , L) (where we recall that the top
n players have now been ordered according to their BTL
ranking). As described above, the resulting Σ is used in the

proposal distribution for the MH algorithmwhile we use µ
as the mean of the over-dispersed starting points for each
chain. The accuracy of the approximation is empirically
investigated in Section 5 and is found to be very close to
the true mean and covariance of L and S1:n. We note that
the approximate mean, µ, and covariance, Σ, could also
be used in other MCMC algorithms such as Hamiltonian
Monte Carlo (Neal 2011, Sec 4.1) or elliptical slice sampling
(Murray, Adams, and Mackay 2010).

3.2.2 Setting σM via an empirical Bayesian approach

Thehyperparameter σM was introduced in (17) to adjust for
the predictability of the sport and we need to determine
an appropriate σM in order to fully specify our model. A
simple way to do this is to set σM to be the maximum like-
lihood estimator over the match-play data where the skills
are set to be S1:n = µS, the approximate posterior mean of
the skills derived above. That is,

σM = argmaxσ>0
∏︁
i,j≤n

p(Mij | Si = µi , Sj = µj; σ). (28)

We are thus adopting an empirical Bayes approach where
a point estimate of the random variables is used to set the
hyperparameter, σM; see (Murphy 2012, p. 172).

An alternative to the empirical Bayes approach would
be to allow σM be a random variable in the generative
model and to infer its value via MCMC. Unfortunately this
approach leads to complications. Recall from Section 2
that σM can be interpreted as scaling the left-handed
advantage and innate skill distributions. If σM is allowed
to be random then this effectively changes the skill distri-
bution. For example if the skills were normally distributed
conditioned on σM, and σM were distributed as an inverse
gamma distribution, then the skills would effectively have
a t distribution (as the inverse gamma is a conjugate prior
to the normal distribution). Since we wish to keep our
skills as Laplace distributed, or more generally medium-
tailed, it is simpler to fix σM as a hyperparameter.

4 Using external rankings and
handedness data

An alternative variation on our model is one where we
know the individual player handedness of each of the topn
players and also have an external ranking scheme of their
total skills. For example, such a ranking may be available
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for the professional athletes in a given sport, e.g. the offi-
cial world rankings maintained by the World ATP Tour for
men’s tennis (Stefani 1997). We will assume without loss
of generality that the player indices are ordered as per the
given rankings so that the ith ranked player has index i
in our model and Si ≥ Si+1 for all i < n. We are there-
fore assuming that the external rankings are “correct” and
so we can condition our generative model on these rank-
ings. Specifically, we tighten the assumption made in (4)
that players indexed 1 to n are the top n players to assume
that the ith indexed player is also the ith ranked player
for i = 1, . . . , n. Then a similar argument that led to (22)
implies that the posterior of interest satisfies

p(S1:n , L | H1:n , Si ≥ Si+1∀ i < n, Sn ≥ max{Sn+1:N})

∝ p(L)
n∏︁

i=1
g(Si − LHi) F(Sn | L)N−n ∏︁

i<n
I[Si ≥ Si+1]

(29)

where I denotes the indicator function. We can simulate
from the posterior distribution in (29) using a Gibbs sam-
pler. The conditional marginal distribution (required for
the Gibbs sampler) of each player’s skill is then a simple
truncated distribution so that

p(Si | S−i , H1:n , L)

∝ g(Si − LHi) I[Si+1 ≤ Si ≤ Si−1] (30)

for 1 < i < n and where S−i := {Sj : j /= i, 1 ≤ j ≤ n}.
Similarly the conditional distributions of S1 and Sn satisfy

p(S1 | S−1, H1:n , L) ∝ g(S1 − LH1) I[S1 ≤ S2]

and

p(Sn | S−n , H1:n , L)

∝ g(Sn − LHn) F(Sn | L)N−n I[Sn−1 ≤ Sn].

Conveniently, the skills of the odd ranked players can be
updated simultaneously since they are all independent of
each other conditional on the skills of the even ranked
players. Similarly, the even-ranked players can also be
updated simultaneously conditional on the skills of the
odd-ranked players. This makes the sampling paralleliz-
able and efficient to implement when using Metropolis-
within-Gibbs. Our algorithm therefore updates the vari-
ables in three blocks:
1. Update all even skills simultaneously.
2. Update all odd skills simultaneously.

3. Update L via a Metropolis-Hastings¹⁴ (MH) step with

p(L | S1:n , H1:n) ∝ p(L)
n∏︁

i=1
g(Si − LHi) F(Sn | L)N−n .

In the absence of match-play data, we believe this model
should yield slightly more accurate inference regarding L
than the base model of Section 2 when the left-handers
are not evenly spaced among the top n players. For exam-
ple, it may be the case that all left-handers in the top n
are ranked below all the right-handers in the top n. While
such a scenario is of course unlikely, it would suggest that
the value of L is not as large as that inferred by the base
modelwhich only considers nl and not the relative ranking
of the nl players among the top n. Themodel here accounts
for the relative ranking and as such, should yield a more
accurate inference of L to the extent that the lefties are not
evenly spaced among the top n players.

5 Numerical results

We now apply our models and results to Mens ATP tennis.
Specifically, we use handedness data as well as match-
play results from ATP Tennis Navigator (Tennis Navigator
2004), a database that includesmore than seven thousand
players from 1980 until the present and hundreds of thou-
sands of match results at various levels of professional
and semi-professional tennis.We restrict ourselves to play-
ers for whom handedness data is available and who have
played a minimum number of games (here, set at thirty).
This last restriction is required because we run BTL as a
preprocessing step in order to extract the top n = 150 play-
ers before applying our methods and because BTL can be
susceptible to large errors if the graph of matches (with
players as nodes, wins as directed edges) is not strongly¹⁵
connected. Using data on numbers of recreational tennis
players (Tennis Europe 2015; The Physical Activity Council
2016), we roughly estimate a universe of N = 100, 000
advanced players but we note that our results were robust
to the specific value of N that we chose. Specifically, we
also considered N = 1 and N = 50 million and obtained
very similar results regarding L. We used data from 2014

14 In the numerical results of Section 5, theMHproposal distribution
for Lwill be a Gaussian with mean equal to the current value of L and
where the variance is set during a tuning phase to obtain an accep-
tance probability ≈ 0.234. (This value is theoretically optimal under
certain conditions; see (Roberts, Gelman, and Gilks 1997)).
15 Otherwise theremaybeplayers that have played andwononly one
match who are impossible to meaningfully rank.
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for all of our experiments and our results were based on
the model of Section 2 with a Laplace prior on the skills
and an uninformative prior on L with σL = 10. The MCMC
chains for the extendedmodel of Section 3were initialized
by a random perturbation from the approximate mean as
outlined inSection 3.2, and convergence checkedusing the
Gelman-Rubin diagnostic (Gelman and Rubin 1992).

5.1 Posterior distribution of L

In Figure 2, we display the posterior of L obtained using
each of the different models of Sections 2 to 4 using data
from 2014 only. We observe that these inferred posteriors
are essentially identical. This is an interesting result and it
suggests that for large populations there is essentially no
additional information conveyed to the posterior of L by
match-play data or ranked handedness if we are already
given the proportion of left-handers among the top n play-
ers. The posterior of L can be interpreted in terms of a
change in rank as discussed Section 2.3. Since the poste-
rior of the aggregate handedness with the Laplace approx-
imation agrees with the posterior obtained from the full
match-play data, we would argue the results of Table 1
are valid even in the light of the match-play data. These
results suggest that being left-handed in tennis improves a

–1 –0.5 0 0.5 1

Figure 2: Posteriors of the left-handed advantage, L, using the infer-
ence methods developed in Sections 2, 3 and 4. “Match-play”
refers to the results of MCMC inference using the full match-play
data, “Handedness and Rankings” refers to MCMC inference
using only individual handedness data and external skill rankings,
“Aggregate handedness” refers to (9) and “Aggregate handedness
with Laplace Approximation” refers to (9) but where the Laplace
approximation in (11) substitutes for the likelihood term. “Match-
play without conditioning on Topn,N” is discussed in Section 5.2.

player’s rank by a factor of approximately 1.36 on average.
Of course, these results were based on 2014 data only and
as we shall see in Section 6, there is substantial evidence
to suggest that L has varied through time.

While match-play data and ranked handedness there-
fore provide little new information on L over and beyond
knowing the proportion of left-handers in the top n play-
ers, we can use the match-play model to answer hypothet-
ical questions regarding win probabilities when the lefty
advantage is stripped away from the players’ skills. We
discuss such hypothetical questions in Section 5.3.

5.2 On the importance of conditioning on
Topn,N

We now consider if it’s important to condition on Topn,N
as we do in (22) when evaluating the lefty advantage.
This question is of interest because previous papers in
the literature have tried to infer the lefty advantage with-
out conditioning on the players in their data-set being the
top ranked players. For example, (Del Corral and Prieto-
Rodríguez 2010) built a probit model for predictingmatch-
play outcomes and their factors included a player’s rank,
height, age and handedness. Using data from 2005 to
2008 they did not find a consistent statistically significant
advantage to being lefthanded in this context. That said,
their focuswasnot inferring the lefty advantage, but rather
in seeinghowuseful an indicator it is for predictingmatch-
play outcomes. Moreover, it seems reasonable to assume
that any lefty advantage would already be accounted for
by a player’s rank. In contrast, (Breznik 2013) attempted
to infer the lefty advantage by comparing the mean rank-
ing of top left- and right-handed players as well as the fre-
quency of matches won by top left- vs top right-handed
players. Using data from 1968 to 2011 they found a statisti-
cally significant advantage for lefties. The analysis in these
studies do not account for the fact that the players in their
data-sets were the top ranked players. In ourmodel, this is
equivalent to removing the Topn,N condition from the left
side of (22) and F(min{S1:n} | L)N−n from its right side.

It makes sense then to assess if there is value in
conditioning on Topn,N when we use match-play data
(and handedness) among top players to estimate the lefty
advantage. We therefore re-estimated the lefty advantage
by considering the same match-play model of Section 3
but where we did not condition on Topn,N . Inference was
again performed using MCMC on the posterior of (22) but
with the F(min{S1:n} | L)N−n factor ignored. Based on this
model we arrive at a very different posterior for L and this
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may also be seen in Figure 2. Indeedwhenwe fail to condi-
tion on Topn,N we obtain a posterior for L that places more
probability on a lefty disadvantage than a lefty advantage
and whose mode is negative. The reason for this is that in
2014 there were few very highly ranked left-handers with
Nadal being the only left-hander among the top 20. In fact
when we apply BTL to the match-play data among the top
150 players that year we find that the mean rank of top
right-handers is 74.07 while the mean rank of top lefties
is 83.39. A model that only considers results among top
150 players that year therefore concludes there appears to
be a disadvantage to being left-handed. In contrast, when
we also condition upon Topn,N (as indeed we should since
this provides additional information) we find this conclu-
sion reversed so that there appears to be a lefty advantage.
Moreover this reversal makes sense: with 23 players in the
top 150 being lefties we see the percentage of top lefties
is 15.33% which is greater than the 11% assumed for the
general population. We therefore see that conditioning on
Topn,N can result in a significant improvement in the infer-
ence of L over and beyond just considering thematch-play
results among the top n players.

5.3 Posterior of skills with and without the
advantage of left-handedness

We now consider the posterior distribution of the innate
skills and how they differ (in the case of left-handers) from
the posterior of the total skills. We also consider the effect
of L on match-play probabilities and rankings of individ-
ual players. These results are based on the extendedmodel
of Section 3. In Figures 3 and 4 we demonstrate the poste-
rior of the skills of Rafael Nadal who plays¹⁶ left-handed
and the right-handed Roger Federer. During their careers
these two players have forged perhaps the greatest rivalry
inmodern sport. The figures display the posterior distribu-
tions of the innate skill, G, and total skill, S = G + HL, of
Nadal and compares them to the skill, S = G, of Federer
who is right-handed. Clearly the posterior skill distribu-
tion of Federer is to the right of Nadal’s, and the discrep-
ancy between the two is even larger when the advantage
of left-handedness is removed. This is not surprising since
Federer’s ranking, according to BTL (as well as official

16 It is of interest to note that although Nadal plays left-handed and
has done so from a very young age, he is in fact right-handed. There-
fore to the extent that the ISH holds, then Nadal may not actually be
benefitting from L. In contrast, to the extent the NFDS mechanism is
responsible for the lefty advantage, then Nadal should be benefitting
from L.

–1 –0.5 0 0.5 1 1.5 2

Figure 3: Posterior distribution of Federer’s skill minus Nadal’s skill
with and without the advantage of left-handedness.

5.5 65 6.5 7 7.5 8

Figure 4:Marginal posterior distribution of Federer’s and Nadal’s
skill, with and without the advantage of left-handedness.

year-end rankings), was higher than Nadal’s at the end
of 2014. It may be tempting to infer from these posteri-
ors that Federer has a high probability of beating Nadal
in any given match (based on 2014 form). The match-play
data, however, shows that Nadal and Federer played only
once in 2014 with Nadal winning in the semi-final of the
Australian Open.

While Nadal and Federer is probably the most inter-
esting match-up for tennis fans, this match-up also points
to one of the weaknesses of our model. Specifically, we
do not allow for player interaction effects in determin-
ing win probabilities whereas it is well known that some
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players match up especially well against other players.
Nadal, for example, is famous formatchingupparticularly
well against Federer and has a 23-15 career head-to-head
win/loss record¹⁷ against Federer despite Federer often
having a superior record (to Nadal’s) against other players.
For this reason (and others outlined in the introduction)
we do acknowledge that inference regarding individual
players should be conducted with care.

Table 2 extends the analysis of Federer and Nadal
to other top ranked players. Each cell in the table pro-
vides the probability of the lower ranked player beating
the higher ranked player according to their posterior skill
distributions. Above the diagonal the advantage of left-
handedness is included in the calculations whereas below
the diagonal it is not. The effect on thewinning probability
due to left-handedness can be observed by comparing the
values above and below the diagonal. For example Nadal
has a 39.5% chance of beating Federer with the advan-
tage of left-handedness included, but this drops to 31.8%
when the advantage is excluded. The left-handed players
are identified in bold font together with the match-play
probabilities that change when the left-handed advantage
is excluded, i.e. when left- and right-handed players meet.
In all cases removing the advantage of left-handedness
decreases the winning probability of left-handed players,
although the magnitude of this effect varies on account of
the non-linearity of the sigmoidalmatch-play probabilities
in (17).

If the advantage of left-handedness was removed then
the decrease in left-handers’ skills would lead to a change
in their rankings. In Table 3, for example, we see how the

17 The 23-15 record is as of writing this article although it should be
noted that Federer has won their last 5 encounters. It is also inter-
esting to note that Nadal’s advantage is explained entirely by their
clay-court results where he has a 13-2 head-to-head win/loss edge.

Table 3: Changes in rank of prominent left-handed players when the
left-handed advantage is excluded.

Player Match- Handedness and Aggregate
play rankings handedness

Rafael Nadal 4 → 4 4 → 5 4 → 5
Martin Klizan 25 → 39 24 → 33 24 → 33
Feliciano Lopez 27 → 41 27 → 37 27 → 37
Fernando Verdasco 38 → 52 36 → 49 36 → 49

The change in rank in the “Match-play” column is computed using
the MCMC samples generated using the full match-play data. The
change in rank in the “Handedness and Rankings” column is
computed using the MCMC samples given only individual
handedness data and external skill rankings. The “Aggregate
handedness” column uses the BTL ranking as the baseline and the
change in rank is obtained by multiplying the baseline by the rank
scaling factor of 1.36 from Table 1 and rounding to the closest
integer.

ranking (as determined by posterior skill means) of the
top four left-handed players changes when we remove the
left-handed advantage. We also display how these rank-
ings would change when we only use handedness data
and external rankings as in Section 4, and when we only
have aggregate handedness data of the top n players as in
Section 2.2. We see that the change in rankings suggested
by each of the methods largely agree, although there are
some minor variations. Notably Nadal’s rank does not
change when we use the full match-play data-set but he
does drop from 4 to 5 when we use the other inference
approaches. Klizan’s change in rank using the handed-
ness and external rankings data is much smaller than for
the other two methods. Overall, however, we see substan-
tial agreement between the three approaches. This argues
strongly for use of the simplest approach, i.e. the aggregate
handedness approach of Section 2,when the only quantity
of interest is the posterior distribution of L.

Table 2: Probability of match-play results with and without the advantage of left-handedness.

Gi∖Si Djokovic Federer Nishikori Nadal Murray Raonic Klizan Lopez

Djokovic – 38.9 31.5 29.3 21.9 20.2 8.0 7.6
Federer 38.9 – 42.0 39.5 30.6 28.5 12.0 11.5
Nishikori 31.5 42.0 – 47.4 37.8 35.5 15.9 15.2
Nadal 22.9 31.8 39.2 – 40.3 37.9 17.3 16.7
Murray 21.9 30.6 37.8 48.5 – 47.5 23.7 22.8
Raonic 20.2 28.5 35.5 46.0 47.5 – 25.6 24.7
Klizan 5.9 8.9 11.9 17.3 18.2 19.7 – 48.8
Lopez 5.6 8.5 11.4 16.7 17.5 19.0 48.8 –

The players are ordered according to their rank from the top ranked player (Djokovic) to the lowest ranked player (Lopez). A player’s rank is
given by the posterior mean of his total skill, S. Each cell gives the probability of the lower ranked player beating the higher ranked player.
Above the diagonal the advantage of left-handedness is included in the calculations whereas below the diagonal it is not. The left-handed
players are identified in bold font together with the match-play probabilities that change when the left-handed advantage is excluded, i.e.
when left- and right-handed players meet.
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6 A dynamic model for L

Thus far we have only considered inference based on data
collected over a single time period, but it is also interest-
ing to investigate how the advantage of left-handedness
has changed over time in a given sport. Towards this end,
we assume that the advantage of left-handedness, Lt, in
period t follows a Gaussian randomwalk for t = 1, . . . , T.
We also assume that Lt is latent and therefore unobserved.
Instead, we observe the number of top players, nt, as
well as the number, nlt ≤ nt, of those top players that are
left-handed. The generative model is as follows:
– Initial left-handed advantage: L0 ∼ N(0, θ2)
– For time periods t = 1, . . . , T

– Left-handed advantage: Lt ∼ N(Lt−1, σ2K)
– Number of top left-handers: nlt ∼ p(nlt | Lt; nt)

wherewe assume θ2 is large to reflect initial uncertainty on
L0 and σK controls how smoothly L varies over time. The
posterior distribution of L given the data is then given by

p(L0:T | nl1:T ; n1:T)

∝ p(L0)
T∏︁

t=1
p(Lt | Lt−1) p(nlt | Lt; nt). (31)

The main complexity in (31) stems from the distri-
bution p(nlt | Lt; nt). This quantity is infeasible to com-
pute exactly since it requires marginalizing out the player
skills but as we have previously seen, it can be accurately
approximated by the Laplace approximation in (11). Con-
veniently, using this approximation results in all of the
factors in (31) being Gaussian and since Gaussians are
closed undermultiplication, the posterior of L0:T becomes
a multivariate Gaussian. Specifically, we have

p(L0:T | nl1:T ; n1:T)

∝∼ N(L0; 0, θ2)
T∏︁

t=1
N(Lt; Lt−1, σ2K)N

(︂
Lt; L*t , b2

nt
nrtnlt

)︂

∝ N(L0:T ; µ0:T , Σ0:T) (32)

where L*t is as defined in (10), µ0:T and Σ0:T are the pos-
terior mean and covariance matrix, respectively, of L0:T .
Both µ0:T and Σ0:T are functions of nl1:T , n1:T , θ, σ2K, and
can be evaluated analytically using standard Kalman
filtering methods (Barber 2012, Sec. 24). A major advan-
tage of the Kalman filter/smoother is that finding an
appropriate smoothing parameter σ2K via maximum
likelihood estimation (MLE) is computationally tractable.

The likelihood of observing the handedness data under
the generative model is:

p(nl1:T ; n1:T , σ2K)

=
∫︁

RT+1

p(nl1:T , L0:T ; n1:T , σ2K) dL0:T

=
∫︁

RT+1

p(L0)
T∏︁

t=1
p(Lt | Lt−1; σ2K) p(nlt | Lt; nt) dL0:T

∝∼
∫︁

RT+1

N(L0; 0, θ2)
T∏︁

t=1
N(Lt; Lt−1, σ2K)

N
(︂
Lt; L*t , b2

nt
nrtnlt

)︂
dL0:T (33)

where the constant of proportionality coming from the
Laplace approximation does not depend on σ2K . Since all
of the factors in (33) involving L are Gaussian, it is pos-
sible to analytically integrate out L leaving a closed form
expression involving σ2K . Maximizing this expression w.r.t.
σ2K leads to a MLE for σ2K and the calculation details are
provided in Appendix A.4. This value of σ2K can then be
substituted into (32) to find the posterior of L.

In the top panel of Figure 5 we plot the fraction of
left-handers among the top 100 mens tennis players as a
function of year from 1985 to 2016 and using data from
(Bačić and Gazala 2016). In the bottom panel we plot the
inferred value of L over this time period. We note that in
2006 and 2007, the fraction of top left-handers dropped
below 11%, the estimated fraction of left-handers in the
general population. A naive analysis would conclude that
for those years the advantage of left-handedness was neg-
ative. However, this would ignore the randomness in the
fraction of top left-handers from year to year. The Kalman
filter smoothes over the anomalous 2006 and 2007 years
and has a posterior on L with positive mean throughout
1985 to 2016.We also recall our observation from the intro-
duction where we noted that only 2 of the top 32 seeds in
Wimbledon in 2015 were left-handed. There is no incon-
sistency between that observation and the data from 2015
in Figure 5, however. While there were indeed only 2 left-
handed men among the top 32 in the official year-end
world rankings, there was a total of 13 left-handers among
the top 100.

Finally we note that we could also have included indi-
vidual player skills as latent states in our model but this
would have resulted in amuch larger state space andmade
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Figure 5: Posteriors of the left-handed advantage, Lt , computed using the Kalman filter/smoother. The dashed red horizontal lines (at 11%
in the upper figure and 0 in the lower figure) correspond to the level at which there is no advantage to being left-handed. The error bars in
the marginal posteriors of Lt in the lower figure correspond to 1 standard deviation errors.

inference significantly¹⁸ more difficult. As we observed in
Section 5.1, including match-play results does not change
the posterior distribution of L significantly and so we are
losing very little information regarding Lt when our model
and inference is based only on the observed number of top
left-handed players.

7 Conclusions and further
research

In this paper we have proposed amodel for identifying the
advantage, L, of being left-handed in one-on-one interac-
tive sports. We use a Bayesian latent ability framework but
with the additional complication of having a latent factor,
i.e. the advantage of left-handedness, that we needed to
estimate. Our results argued for the use of amedium-tailed
distribution such as the Laplace distribution whenmodel-
ing the innate skills of players. We showed how to infer

18 Recent techniqueshavebeendeveloped forMCMConmultinomial
linear dynamical systems (Linderman, Johnson, and Adams 2015)
that significantly improve the efficiency of inference of large state
space models. However these methods will still be orders of magni-
tude slower than performing inference on the reduced state space
containing only L.

the value of Lwhen only the proportion of top left-handed
players is available. In the latter case we showed that the
distribution of the number of left-handed players among
the top n (out of N) converges as N → ∞ to a binomial
distribution with a success probability that depends on
the tail-length of the innate skill distribution. We also use
this result to develop a simple dynamic model for infer-
ring how the value of L has varied through time in a given
sport. In order to estimate the innate skills of top players
we also considered the case whenmatch-play data among
the topnplayerswas available.Weobserved that including
match-play data in our model makes little or no difference
to the inference of the left-handedness advantage but it
did allow us to address hypothetical questions regarding
match-play win probabilities with and without the benefit
of left-handedness.

It is worth noting that our framework is somewhat
coarse by necessity. In tennis for example, there are impor-
tant factors such as player ability varying across different
surfaces (clay, hard court or grass) that we don’t model.
We also attach equal weight to all matches in our model
estimation despite the fact that some matches and tour-
naments are clearly (much) more important than others.
Moreover, and as we shall see below, we assume (for a
given sport) that there is a single latent variable, L, which
measures the advantage of being left-handed in that sport.
We therefore assume that the total skill of each left-handed
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player benefits to the same extent according to the value of
L. This of course would not be true in practice as it seems
likely that some lefties take better advantage of being
left-handed than others. Alternatively, our model assumes
that all righties are disadvantaged to the same extent by
being right-handed. Again, it seems far more likely that
some right-handed players are more adversely affected
playing lefties than other right-handed players. Finally,
we don’t allow for interaction effects between two play-
ers in determining the probability of one player beating
the other. Again, this seems unlikely to be true in practice
where some players are known to “match up well” against
other players. Nonetheless, we do believe our model cap-
tures the value of being left-handed in an aggregate sense
and can be reasonably interpreted in that manner. While
it is tempting to use the model to answer questions such
as “What is the probability that Federer would beat Nadal
if Nadal was right-handed?” (and we do ask and answer
such questions in Section 5!), we do acknowledge that the
answers to such specific questions should be taken lightly
for the reasons outlined above.

There are several directions of interest for future
research. First, it would be interesting to apply our model
to data-sets from other one-on-one sports and to esti-
mate how Lt varies with time in these sports. The Kalman
filtering/smoothing approach developed in Section 6 is
straightforward to implement and the data requirements
are very limited as we only need the aggregate data
(nlt , nt) for each time period. While trends in Lt across
different sports would be interesting in their own right,
the cross-sport dynamics of Lt could be used to shed
light on the potential explanations behind the benefit of
left-handedness. For example, there is some evidence in
Figure 5 suggesting that the benefit of left-handedness in
men’s professional tennis has decreased with time. If such
a trend could be linked appropriately with other devel-
opments in men’s tennis such as the superior strength
and speed of the players, superior racket and string tech-
nology, time pressure etc. then it may be possible to
attach more or less weight to the various hypotheses
explaining the benefit of left-handedness. The recent¹⁹
work of Loffing (Loffing 2017), for example, studies the
link between the lefty advantage and time pressure in elite
interactive sports. While these ideas are clearly in the lit-
erature already, the Kalman filtering approach provides
a systematic, straightforward and consistent approach

19 This paper was also discussed in a recent New York Times arti-
cle (Yin 2017) reflecting the general interest in the lefty advantage
beyond academia.

for measuring Lt. This can only aid with identifying the
explanation(s) for the benefits of left-handedness andhow
it varies across sports and time.

It would also be of interest to consider more com-
plex models that can also account for interactions in the
skill levels between players and/or different match-play
circumstances. As discussed above, examples of the lat-
ter would include distinguishing between surfaces (clay,
grass etc.) and grand-slam/regular tour matches in ten-
nis. Given the flexibility afforded by a Bayesian approach
it should be straightforward to account for such features in
ourmodels. Given limitedmatch-play data inmany sports,
however, it is not clear thatwewould be able to learnmuch
about such features. In tennis, for example, even the very
best players may only end up playing each other a couple
of times a year or less. As mentioned earlier, Nadal and
Federer only faced each other once in 2014. It would there-
fore be necessary to consider data-set spanning multiple
years inwhich case it would presumably also be necessary
to include form as well as the general trajectory of career
arcs in our models. We note that such modeling might be
of more general interest and identifying the value(s) of L
might not be the main interest in such a study.

Continuing on from the previous point, there has
been considerable interest in recent years in the so-called
“interacting performances theory” O’Donoghue (2009).
This theory recognizes that the performance (and outcome
of a performance) is determined by both the skill level or
quality of an opponent as well as the specific type of an
opponent. Indeed, different players are influenced by the
same opponent types in different ways. Under this theory,
it is important²⁰ to be able to identify different types of
players. Once these types have been identifiedwe can then
label each player as being of a specific type. It may then
be possible to accommodate interaction effects between
specific players (as outlined in the paragraph immediately
above) by instead allowing for player-type interactions.
Such a model would require considerably fewer param-
eters to be estimated than a model which allowed for
specific player-interactions.

Returning to the issue of the left-handedness advan-
tage, we would like to adapt these models and apply
them to other sports such as cricket and baseball where
one-on-one situations still arise and indeed are the main
aspect of the sport. It is well-known, for example, that left-
handed pitchers in Major League Baseball (approx. 25%)

20 See for example Cui et al. (2017a), Cui et al. (2017b) and
O’Donoghue (2005), all of which discuss techniques for identifying
different types of tennis players.
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and left-handed batsmen in elite cricket (approx 20%) are
over-represented. While the model of Section 2 that only
uses aggregate handedness could be directly applied to
these sports, itwouldbenecessary to adapt thematch-play
model of Section 3 to handle them. This follows because
the one-on-one situations that occur in these sports do not
have binary outcomes like win/lose, but instead havemul-
tiple possible outcomeswhose probabilitieswould need to
be linked to the skill levels of the two participants.

We hope to consider some of these alternative direc-
tions in future research.

A Appendix

A.1 Proof of proposition 1

Proof. We begin by observing that the exchangeability of
players implies

p(nl | L; n, N) = p(nl | Topn,N , L; n). (34)

Integrating (34) over the handedness of the top n players
yields

lim
N→∞

p(nl | L; n, N)

= lim
N→∞

∑︁
h1:n∈{0,1}n

p(nl , H1:n = h1:n | Topn,N , L; n)

=
∑︁

h1:n∈{0,1}n:
∑︀n

i=1 hi=nl

lim
N→∞

p(H1:n = h1:n | Topn,N , L; n).

(35)
We can expand each term in the summation by condition-
ing on the top players’ skills,

lim
N→∞

p(H1:n = h1:n | Topn,N , L; n)

= lim
N→∞

∫︁
Rn

p(H1:n = h1:n | S1:n , Topn,N , L)

p(S1:n | Topn,N , L) dS1:n

= lim
N→∞

∫︁
Rn

p(H1:n = h1:n | S1:n , L)

p(S1:n | Topn,N , L) dS1:n . (36)

Most of the proof will focus on showing that the r.h.s.
of (36) equals α(L)nl (1−α(L))nr where α(L) := q/(q+ (1−
q)c(L)), nr := n − nl is the number of top right-handers
and c(L) is the tail-length of the innate skill distribution as
defined in the statement of the proposition. We will write
S[i] for the ith order statistic of the skills S1:N and write H[i]
for the corresponding induced order statistic. Given that

the innate skills have support R we have F(k | L) < 1 for
all k ∈ R, where F denotes the conditional CDF of a
player’s total skill given L. Note that for any values of k,
L and ϵ > 0, we can find Nk,L,ϵ ∈ N such that NnF(k |
L)N−n < ϵ for all N ≥ Nk,L,ϵ. It therefore follows that for
such k, L, ϵ and N we have∫︁

S[n]≤k

p(S1:n | Topn,N , L) dS1:n

=
∫︁

S[n]≤k

(︃
N
n

)︃
F(S[n] | L)

N−n
n∏︁

i=1
f (Si | L) dS1:n

≤

(︃
N
n

)︃
F(k | L)N−n

∫︁
Rn

n∏︁
i=1

f (Si | L) dS1:n

≤ NnF(k | L)N−n

< ϵ (37)

where f denotes the PDF of F. The conditional distribution
of player handedness in (36) factorizes as

p(H1:n = h1:n | S1:n , L) =
n∏︁

i=1
p(Hi = hi | Si , L) (38)

and consider now the ith term in this product. We have

p(Hi = 1 | Si = s, L) =
p(Si = s |Hi = 1, L)p(Hi = 1 | L)

p(Si = s | L)

=
g(s − L)q

qg(s − L) + (1 − q)g(s)

=
q

q + (1 − q) g(s)
g(s−L)

(39)
Assuming c(L) := lims→∞

g(s)
g(s−L) exists as stated in the

proposition we can take limits across (39) to obtain

lim
s→∞

p(Hi = 1 | Si = s, L) =
q

q + (1 − q)c(L)

which we recognize as α(L) which we defined above.
A similar argument for the case Hi = 0 yields
lims→∞ p(Hi = 0 | Si = s, L) = 1 − α(L). Since the limit
of a finite product of functions, each having a finite limit,
is equal to the product of the limits, it therefore follows
that for all ϵ > 0 there exists a kϵ ∈ R such that if si > kϵ
for i = 1, . . . , n then

ϵ >

⃒⃒⃒⃒
⃒p(H1:n = h1:n | S1:n = s1:n , L)

−
n∏︁

i=1
α(L)hi (1 − α(L))1−hi

⃒⃒⃒⃒
⃒

=
⃒⃒
p(H1:n = h1:n | S1:n = s1:n , L) − α(L)nl (1 − α(L))nr

⃒⃒
.

(40)
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We are now in a position to prove that

lim
N→∞

∫︁
Rn

p(H1:n = h1:n | S1:n , L) p(S1:n | Topn,N , L) dS1:n

= α(L)nl (1 − α(L))nr . (41)

For any ϵ > 0, for all N > Nkϵ/3 ,L,ϵ/3 we have⃒⃒⃒⃒
⃒⃒α(L)nl (1 − α(L))nr

−
∫︁
Rn

p(H1:n = h1:n | S1:n , L) p(S1:n | Topn,N , L) dS1:n

⃒⃒⃒⃒
⃒⃒

≤

⃒⃒⃒⃒
⃒⃒⃒α(L)nl (1 − α(L))nr −

∫︁
S[n]≥kϵ/3

p(H1:n = h1:n | S1:n , L)

p(S1:n | Topn,N , L) dS1:n

⃒⃒⃒⃒
⃒⃒⃒

+
∫︁

S[n]≤kϵ/3

p(H1:n = h1:n | S1:n , L)

p(S1:n | Topn,N , L) dS1:n .
(42)

Observe that∫︁
S[n]≥kϵ/3

p(H1:n = h1:n | S1:n , L) p(S1:n | Topn,N , L) dS1:n

≤
∫︁

S[n]≥kϵ/3

(︁
α(L)nl (1 − α(L))nr +

ϵ
3

)︁

p(S1:n | Topn,N , L) dS1:n

≤ α(L)nl (1 − α(L))nr +
ϵ
3

(43)
where the first inequality follows from (40). Similarly, its
minimum value is bounded by∫︁

S[n]≥kϵ/3

p(H1:n = h1:n | S1:n , L) p(S1:n | Topn,N , L) dS1:n

≥
∫︁

S[n]≥kϵ/3

(︁
α(L)nl (1 − α(L))nr − ϵ

3

)︁

p(S1:n | Topn,N , L) dS1:n

=
(︁
α(L)nl (1 − α(L))nr − ϵ

3

)︁
⎛⎜⎝1 −

∫︁
S[n]≤kϵ/3

p(S1:n | Topn,N , L) dS1:n

⎞⎟⎠
≥

(︁
α(L)nl (1 − α(L))nr − ϵ

3

)︁ (︁
1 − ϵ

3

)︁
≥

(︁
α(L)nl (1 − α(L))nr − ϵ

3

)︁
− ϵ

3

(︁
1 − ϵ

3

)︁
≥ α(L)nl (1 − α(L))nr − 2

3 ϵ (44)

where the first inequality follows from (40) and the sec-
ond inequality follows from (37). Combining theupper and
lower bounds of (43) and (44) implies that the first term
on the r.h.s. of (42) is bounded above by 2ϵ/3. The second
term on the r.h.s. of (42) satisfies∫︁
S[n]≤kϵ/3

p(H1:n = h1:n | S1:n , L) p(S1:n | Topn,N , L) dS1:n

≤
∫︁

S[n]≤kϵ/3

p(S1:n | Topn,N , L) dS1:n ≤ ϵ/3.

We can therefore rewrite the bound in (42) as⃒⃒⃒⃒
⃒⃒α(L)nl (1 − α(L))nr −

∫︁
Rn

p(H1:n = h1:n | S1:n , L)

p(S1:n | Topn,N , L) dS1:n

⃒⃒⃒⃒
⃒⃒

≤ 2
3 ϵ +

1
3 ϵ = ϵ

completing the proof of (41). Substituting (41) into (36) and
(36) into (35) yields

lim
N→∞

p(nl | L; n, N)

=
∑︁

h1:n∈{0,1}n:
∑︀n

i=1 hi=nl

α(L)nl (1 − α(L))nr

=

(︃
n
nl

)︃
α(L)nl (1 − α(L))nr

so the limiting distribution is Binomial
(︀
nl; α(L), n

)︀
as

desired.
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A.2 Rate of convergence for probability of
left-handed top player given normal
innate skills

Throughout this subsection we use ϕ(·) andΦ(·) to denote
the PDF and CDF, respectively, of a standard normal ran-
dom variable. We also assume that the advantage of left-
handedness, L, is a strictly positive and known constant.
The notation S[1] is used to indicate the maximum of N
IID variables S1, . . . , SN with H[1] being the induced order
statistic corresponding to S[1] (see (David and Nagaraja
2003, Ch. 6.8) for more background on induced order
statistics).

Proposition 2. If the innate skills are IID standard normal
and the advantage of left-handedness, L, is strictly positive,
then p(H[1] = 0 | L) = Ω(exp(−L

√︀
logN)).

Proof. Since L > 0 is assumedknownwewill typically not
bother to condition on it explicitly in the arguments below.
This means the expectations that appear below are never
over L. We begin by observing that

p(H[1] = 0 | L)

= ES[1] [p(H[1] = 0 | S[1])]

= E
[︂ ϕ(S[1]) (1 − q)
qϕ(S[1] − L) + (1 − q)ϕ(S[1])

]︂

= E
[︃

1
exp

(︀
S[1]L

)︀
exp

(︀
−L2/2

)︀ q
1−q + 1

]︃
(45)

where the second equality follows from precisely the same
argument that we used to derive (40). Lemma 1 below
implies that we can replace S[1] in (45) with X[1] + L where
X[1] is the maximum of N IID standard normal random
variables andwith the equality replaced by a greater-than-
or-equal to inequality. We therefore obtain

p(H[1] = 0 | L)

≥ E
[︃

1
exp

(︀
(X[1] + L)L

)︀
exp

(︀
−L2/2

)︀ q
1−q + 1

]︃

= E
[︂

1
exp(LX[1])/(2c1) + 1

]︂
(46)

where c1 := exp
(︀
−L2/2

)︀ 1−q
2q > 0. A little algebra shows

that the denominator in (46) is less than or equal to
exp(LX[1])/c1 if X[1] ≥ c2 := ln(2c1)/L and it is less than 2

otherwise. Thus we have

p(H[1] = 0 | L)

≥ E
[︂

1
exp(LX[1])/c1

I{X[1]≥c2} +
1
2 I{X[1]<c2}

]︂
≥ c1E

[︁
exp(−LX[1])I{X[1]≥c2}

]︁
. (47)

We can now complete the proof by applying the results of
Lemmas 2 and 3 below beginning with (47). Specifically,
we have

p(H[1] = 0 | L)

≥ c1E
[︁
exp(−LX[1])I{X[1]≥c2}

]︁
≥ c1E[exp(−LX[1])] − c1c3NΦ(c2)N−1

≥ c1 exp(−LE[X[1]]) − c1c3NΦ(c2)N−1

≥ c1 exp
(︁

−L
(︁√︀

2 logN
)︁)︁

− c1c3NΦ(c2)N−1

= Ω
(︁
exp

(︁
−L

√︀
logN

)︁)︁

where the second inequality follows from Lemma 2, the
third inequality follows from Jensen’s inequality, the
fourth follows from Lemma 3 (a standard result that
bounds the maximum of IID standard normal random
variables) and c3 := E[exp(−LX)I{X≤c2}].

As stated earlier, in each of the following Lemmas it is
assumed that X1, . . . , XN are IID standard normal and X[1]
is their maximum.

Lemma 1. Define the function

d(s) :=
(︂
exp (sL) exp

(︁
−L2/2

)︁ q
1 − q + 1

)︂−1
.

If the advantage of left-handedness, L, is strictly positive
then E[d(S[1])] ≥ E[d(X[1] + L)].

Proof. Wefirst recall the CDFof the total skill, S, is givenby
F(s) = qΦ (s − L)+ (1−q)Φ (s) and that F(s) ≥ Φ (s − L)
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for all s if L > 0. We then obtain

E[d(S[1])] − E[d(X[1] + L)]

=

∞∫︁
−∞

d(s)NF(s)N−1f (s) ds

−
∞∫︁

−∞

d(x + L)NΦ(x)N−1ϕ(x) dx

=

∞∫︁
−∞

d(s)NF(s)N−1f (s) ds

−
∞∫︁

−∞

d(s)NΦ (s − L)N−1 ϕ (s − L) ds

=

∞∫︁
−∞

d(s)
[︁
NF(s)N−1f (s)

−NΦ (s − L)N−1 ϕ (s − L)
]︁
ds

= d(s)
[︁
F(s)N − Φ (s − L)N

]︁ ⃒⃒⃒⃒∞
−∞⏟  ⏞  

=0

−
∞∫︁

−∞

∂d(s)
∂s⏟  ⏞  
<0

[︁
F(s)N − Φ (s − L)N

]︁
⏟  ⏞  

>0

ds

> 0

where the second to last line follows from integration by
parts, and the last line follows because for any L > 0
we have (i) d(s) is a strictly monotonically decreasing
function of s and (ii) F(s)N > Φ (s − L)N .

Lemma 2. For any constants L and c, we have

E[exp(−LX[1])I{X[1]≥c}] ≥ E[exp(−LX[1])] − aNΦ(c)N−1

where a := E[exp(−LX)I{X≤c}] where X is a standard
normal random variable.

Proof. We first note that Φ(x) ≤ Φ(c) for all x < c from
which it immediately follows that

Φ(x)N−1Nϕ(x) exp(−Lx)

≤ Φ(c)N−1Nϕ(x) exp(−Lx). (48)

Integrating both sides of (48) w.r.t. x from −∞ to c
yields

c∫︁
−∞

Φ(x)N−1Nϕ(x) exp(−Lx) dx

≤
c2∫︁

−∞

Φ(c)N−1Nϕ(x) exp(−Lx) dx

from which we obtain

E[exp(−LX[1])I{X[1]≤c}]

≤ NΦ(c)N−1E[exp(−LX)I{X≤c}] (49)

where X is a standard normal random variable. The state-
ment of the Lemma now follows by noting

E[exp(−LX[1])I{X[1])≥c}]

= E[exp(−LX[1]))] − E[exp(−LX[1])I{X[1]<c}]

≥ E[exp(−LX[1]))] − NΦ(c)N−1E[exp(−LX)I{X<c}]

= E[exp(−LX[1]))] − aNΦ(c)N−1

where the inequality follows from (49).

The following Lemma is well known but we include it here
for the sake of completeness.

Lemma 3. E[X[1]] ≤
√︀
2 logN.

Proof. The proof follows from a simple application of
Jensen’s Inequality and the fact that the sum of non-
negative variables is larger than the maximum of those
variables. For any constant β ∈ R we have

E[X[1]] =
1
β log

(︀
exp(E[βX[1]])

)︀
≤ 1

β log
(︀
E[exp(βX[1])]

)︀

≤ 1
β log

(︃
E

[︃ N∑︁
i=1

exp(βXi)
]︃)︃

=
1
β log

(︀
NE[exp(βX)]

)︀
=

1
β log

(︁
N exp(β2/2)

)︁
≤

√︀
2 logN .
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where we chose β =
√︀
2 logN to obtain the final

inequality.

A.3 Difference in skills at given quantiles
with Laplace distributed innate skills

Proposition 3. If the innate skills are IID Laplace dis-
tributed with mean 0 and scale parameter b > 0, then for
any fixed finite L and sufficiently small quantiles λi , λj ∈
(0, 1)

lim
N→∞

(︁
S[Nλj ] − S[Nλi ]

)︁
= b log(λi/λj)

where the convergence is in probability and we use S[Nλi ] to
denote²¹ the [Nλi]th order statistic of the skills S1, . . . , SN .

Proof. Since the innate skills are Laplace distributed with
mean 0 and scale b > 0 they have the CDF

G(S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 exp (S/b) if S < 0

1 − 1
2 exp (−S/b) if S ≥ 0

(50)

while the total skill distribution for someone from the
mixed population of left- and right-handers has CDF F(S |
L) = qG(S − L) + (1 − q)G(S). For skills S ≥ max{L, 0} it
therefore follows from (50) that

F(S | L) = q
(︂
1 − 1

2 exp
(︀
−(S − L)/b

)︀)︂

+ (1 − q)
(︂
1 − 1

2 exp (−S/b)
)︂

= 1 − 1
2 exp (−S/b)

[︀
q exp(L/b) + 1 − q

]︀
. (51)

Since the Laplace distribution has domainR, for any fixed
finite L we have limλ↓0 F−1(1 − λ | L) = ∞. Thus for suffi-
ciently small quantiles λ ∈ (0, 1)we have F−1(1−λ | L) >

max{L, 0}. Consider such a value of λ. Since F(F−1(1− λ |
L) | L) = 1 − λ it that

λ = 1 − F(F−1(1 − λ | L) | L)

=
1
2 exp

(︁
−F−1(1 − λ | L)/b

)︁
[︀
q exp(L/b) + 1 − q

]︀
(52)

21 Here [·] denotes rounding to the nearest integer.

where the second equality follows from (51) with S =
F−1(1 − λ | L). Simplifying (52) now yields

F−1(1 − λ | L)

= −b log(λ) + b log([q exp(L/b) + 1 − q]/2). (53)

From (David and Nagaraja 2003, pp. 288) we know that

lim
N→∞

(︁
S[Nλj ] − S[Nλi ]

)︁
= F−1(1 − λj | L) − F−1(1 − λi | L) (54)

where convergence is understood to be in probability. Sub-
stituting (53) into (54) then yields (for λi and λj sufficiently
small)

lim
N→∞

(︁
S[Nλj ] − S[Nλi ]

)︁
= −b log(λj) + b log([q exp(L/b) + 1 − q]/2)

− (−b log(λi) + b log([q exp(L/b) + 1 − q]/2))

= b log(λi/λj)

as claimed.

A.4 Estimating the Kalman filtering
smoothing parameter

Here we explain how to compute the MLE for σ2K as dis-
cussed in Section 6 where we developed a Kalman fil-
ter/smoother for estimating the lefty advantage Lt through
time. The likelihood of the observed handedness data
over the time interval t = 1, . . . , T is given in (33) and
satisfies

p(nl1:T ; n1:T , σ2K)

∝∼
∫︁

RT+1

N(L0; 0, θ2)

T∏︁
t=1

N(Lt; Lt−1, σ2K)N(Lt; L*t , σ2t ) dL0:T

where σ2t := b2 nt
nrtnlt

. To perform MLE over σK we first sim-
plify the likelihood, keeping only factors involving σK .
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We therefore obtain

p(nl1:T ; n1:T , σ2K)

∝∼
∫︁

RT+1

1√
2πθ

exp
(︂

− L20
2θ2

)︂ T∏︁
t=1

1√
2πσK

exp
(︂

− (Lt − Lt−1)2

2σ2K

)︂
1√
2πσt

exp
(︂

− (Lt − L*t )2

2σ2t

)︂
dL0:T

∝ σ−T
K

∫︁
RT+1

exp
(︃

− L20
2θ2 −

T∑︁
t=1

(Lt − Lt−1)2

2σ2K
− (Lt − L*t )2

2σ2t

)︃
dL0:T

∝ σ−T
K

∫︁
RT+1

exp
(︃

−1
2

(︃
L20
θ2 +

T∑︁
t=1

L2t − 2LtLt−1 + L2t−1
σ2K

+
L2t − 2LtL*t

σ2t

)︃)︃
dL0:T

= σ−T
K

∫︁
RT+1

exp
(︃

−1
2

(︃
L20(θ−2 + σ−2

K ) − L2Tσ−2
K +

T∑︁
t=1

L2t (2σ−2
K + σ−2

t ) − 2σ−2
K LtLt−1 − 2σ−2

t LtL*t

)︃)︃
dL0:T

= σ−T
K

∫︁
RT+1

exp
(︂

−1
2L

⊤
0:TΣ−1L0:T + v⊤L0:T

)︂
dL0:T (55)

where Σ−1 ∈ R(T+1)×(T+1) is a symmetric tri-diagonal
positive semi-definite matrix with entries

Σ−1
0,0 = θ−2 + σ−2

K

Σ−1
t,t = 2σ−2

K + σ−2
t for 0 < t < T

Σ−1
T,T = σ−2

K + σ−2
t

Σ−1
t,t+1 = Σ−1

t+1,t = −σ−2
K for 0 ≤ t < T

and v ∈ RT+1 is a vector with entries v0 = 0 and vt =
L*tσ−2

t for t = 1, . . . , T. We can integrate out L0:T by
appropriately normalizing the Gaussian exponential in
(55). In particular, we have

p(nl1:T ; n1:T , σ2K)

∝∼ σ−T
K

∫︁
RT+1

exp
(︂

−1
2(L0:T − Σv)⊤Σ−1(L0:T − Σv)

+
1
2 v

⊤Σv
)︂
dL0:T

∝ σ−T
K exp

(︂
1
2 v

⊤Σv
)︂ √︀

|Σ|.

(56)
The expression in (56) can then be evaluated numerically
for any value of σK . (Note that Σ and therefore the |Σ| term
in (56) depends on σK so an explicit solution for the MLE
of σK is unlikely to be available.)
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