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We study the performance of a stylized supply chain where two firms, a retailer and a producer, compete in a Stackelberg
game. The retailer purchases a single product from the producer and afterward sells it in the retail market at a stochastic
clearance price. The retailer, however, is budget constrained and is therefore limited in the number of units that he may
purchase from the producer. We also assume that the retailer’s profit depends in part on the realized path or terminal value
of some observable stochastic process. We interpret this process as a financial process such as a foreign exchange rate or
interest rate. More generally, the process can be interpreted as any relevant economic index. We consider a variation (the
flexible contract) of the traditional wholesale price contract that is offered by the producer to the retailer. Under this flexible
contract, at t = 0 the producer offers a menu of wholesale prices to the retailer, one for each realization of the financial
process up to a future time � . The retailer then commits to purchasing at time � a variable number of units, with the
specific quantity depending on the realization of the process up to time � . Because of the retailer’s budget constraint, the
supply chain might be more profitable if the retailer was able to shift some of the budget from states where the constraint
is not binding to states where it is binding. We therefore consider a variation of the flexible contract, where we assume that
the retailer is able to trade dynamically between zero and � in the financial market. We refer to this variation as the flexible
contract with hedging. We compare the decentralized competitive solution for the two contracts with the solutions obtained
by a central planner. We also compare the supply chain’s performance across the two contracts. We find, for example,
that the producer always prefers the flexible contract with hedging to the flexible contract without hedging. Depending on
model parameters, however, the retailer might or might not prefer the flexible contract with hedging.
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financial constraints; supply chain coordination.
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1. Introduction
We consider the operation of a stylized supply chain with
one producer and one retailer. The producer manufactures
a single product, which it sells to the retailer. The retailer
in turn sells the product in the retail market at a stochas-
tic clearance price. We consider a noncooperative mode of
operation in which both players maximize their own profit
functions. In particular, we consider a Stackelberg game
where the producer, acting as leader, proposes a retail price
or menu of prices to the retailer, who then decides how
many units to order. As is customary in the supply chain
literature (e.g., Lariviere 1998 and Tsay et al. 1998), we
are interested in characterizing the solution of the game
as well as its efficiency. We measure the efficiency using
the so-called competition penalty, that is, the ratio of the
noncooperative supply chain profits to the centralized sup-
ply chain profits (e.g., Cachon and Zipkin 1999).

Our model differs from previous work in two aspects.
First, we assume that the retailer operates under a budget
constraint. In particular, a limited amount of cash or work-
ing capital is available to the retailer for purchasing prod-
uct units from the producer. Budget constraints are quite
common in practice for a number of reasons. For example,

many companies have only limited and/or costly access
to credit markets. This could be due to (i) high levels of
risk aversion in the financial markets, (ii) the presence of
asymmetric information whereby management knows that
the company is in much better shape than is generally per-
ceived by the markets, or (iii) structural or legal reasons
that make it difficult to raise capital. It is worth mentioning
that some companies also choose to restrict their managers
by imposing budget constraints on their actions.

The imposition of budget constraints has for the most
part been ignored in the extensive research on supply chain
management. A recent exception is the work by Buzacott
and Zhang (2004), where the interplay between inventory
decisions and asset-based financing is investigated.

The second distinguishing aspect of our model is the
existence of a financial market or economic index whose
movements are correlated (we use the term “correlated”
loosely in this paper when referring to any form of statisti-
cal dependence) with the supply chain’s profits. For exam-
ple, if the producer sells to a foreign retailer and quotes
prices in foreign currency units, then his profits, in units
of his domestic currency, will be correlated with exchange
rate movements. Similarly, if the retailer pays the producer
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in arrears, then the producer is exposed to interest rate risk
(representing the time value of the delayed payment) as
well as possible default risk. It could also be the case that
the clearance price for the product in the retail market is
influenced in part by the overall state of the economy or the
state of particular sectors within the economy. These states
might be represented by the value of some well-chosen
economic index.

The existence of the financial market affects our frame-
work in two ways. First, the movements of the financial
market serve as a public signal that the players can use to
negotiate the terms of the procurement contract. Second,
the financial market can be used to minimize the impact
of the budget constraint. In particular, by trading dynami-
cally in the financial market the retailer can shift resources
from states where the budget constraint is not binding to
states where it is. It is therefore worth mentioning that the
problem managers face is not necessarily one of having too
little working capital. Rather, it is the inability to transfer
some of that capital from states where it is not needed to
states where it is. Even if it is possible and cheap to do so,
raising a loan in the financial markets will not solve that
problem because it raises the same amount of cash irrespec-
tive of whatever state occurs in the future. The ability to
trade dynamically in the financial markets, however, does
help to address that problem. This ability to shift resources
across different states is of particular interest when the two
players use the financial market to negotiate the terms of
the procurement contract.

As a side remark, we note that in this paper we will
use the term “financial market” even when we have a more
general economic index in mind. While it is not possible
to trade every economic index, many are tradeable. At the
Chicago Mercantile Exchange (CME), for example, deriva-
tives can be traded on the consumer price index, nonfarm
payrolls, U.S. retail sales, and U.S. jobless claims, among
others. Moreover, the current “securitization” trend sug-
gests that ever more economic indices will be tradeable in
the future.

The central objective in this paper is to investigate how
financial markets and the information they convey can be
effectively used in the design of procurement contracts. Our
research is motivated by the growing impact that financial
markets are having in the operations of nonfinancial corpo-
rations. For example, Southwest Airlines has been able to
remain profitable in a period when most carriers are strug-
gling to stay in business, by actively trading fuel deriva-
tives to hedge the price they must pay for jet fuel; see
Carter et al. (2004). Similarly, manufacturing companies
such as Microsoft and GM employ sophisticated trading
strategies in the foreign exchange markets to hedge their
currency exposure when selling their products abroad (see
Chapter 6 in Boyle and Boyle 2001 and Desai and Veblen
2005). Moreover, it is often the case that financial mar-
kets impact operating profits in a complex manner. For
example, when Microsoft hedges their currency exposure

when selling their software in Mexico, they do so in the
knowledge that the exchange rate also influences the local
demand in Mexico for their software even when the soft-
ware is priced in Mexican pesos. See Boyle and Boyle
(2001). Because the primary purpose of financial markets
is to enable the efficient allocation of risk (and resources)
among generally risk-averse agents, it is no surprise that
an ever-increasing number of nonfinancial risks are being
securitized. As this trend continues, the role of financial
decision making in operational decision making is sure to
grow in significance.

Despite the extensive use of financial risk management
by corporations, research in operations management in gen-
eral (and in supply chain research in particular) has gener-
ally borrowed little from the substantial literature in finance
and financial engineering. While it is true that various tools
from finance such as mean-variance analysis (e.g., Sobel
1994, Chen and Federgruen 2000), portfolio optimiza-
tion (e.g., Martínez-de-Albéniz and Simchi-Levi 2005),
credit risk analysis (e.g., Babich et al. 2007, Buzacott and
Zhang 2004), and option pricing theory (e.g., Smith and
Nau 1995, Birge 2000) have been applied to certain prob-
lems in operations, these problems are generally studied
in a setting that does not include the presence of financial
markets. Put differently, the tools of finance have been used
but the setting of finance has not. There are, of course,
some exceptions. In particular, some papers incorporate
commodity markets as an integral component of the oper-
ational environment. This occurs, for example, in some
of the real options and inventory/production control litera-
ture (e.g., Brennan and Schwartz 1985, Dixit and Pindyck
1994). However, the incorporation of the financial markets
in this work tends to be problem specific and does not gen-
eralize easily. Moreover, they do not address the general
problem of how companies should dynamically hedge their
operating profits and how operational decisions (such as the
design of procurement contracts) should interact with these
hedging policies.

In this paper, we study how financial markets impact
the design and operations of one of the most widely used
contracts in practice, the wholesale price contract (Cachon
2003). We will consider three variations of this type of con-
tract that are offered by the producer to the retailer. In the
case of the simple contract, the producer offers at time t = 0
a fixed wholesale price to the retailer, who then chooses
an order quantity. In the case of the flexible contract, the
negotiations are also conducted at t = 0, but the physical
transaction is deferred to a date � > 0 when the price and
order quantity are contingent upon the history of the finan-
cial market up to time � . It is assumed that no trading
in the financial markets takes place. The flexible contract
with hedging is similar to the flexible contract, except now
the retailer has the ability to trade in the financial markets
between t = 0 and t = � .

We assume that both players are risk neutral and max-
imize the economic value of their operations, that is, the
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expected value of their payoffs under an appropriate equiv-
alent martingale measure (EMM). Because some of the
uncertainty in our framework will be driven by nonfinan-
cial noise, the setting of this paper is one of incomplete
markets (see, for example, Shreve 2004). A standard result
from financial economics then implies that a unique EMM
will not exist, so an appropriate one would need to be iden-
tified using economic principles. We will not concern our-
selves with the selection of the appropriate EMM in this
paper and will instead assume that it has already been iden-
tified. In addition to being economically sound, we will
see that using an EMM allows us to model the situation
where trading in the financial markets takes place for hedg-
ing purposes only and not for speculative purposes. This
is consistent with how the financial markets are typically
used in practice by nonfinancial corporations. Of course,
the ability to trade in the financial markets can and gener-
ally does have an indirect impact on the players’ profits by
expanding the set of feasible order quantities.

The principal contributions of our analysis are (i) we
characterize those scenarios in which the presence of finan-
cial markets increases the output of the supply chain and
the payoffs of both agents, thereby reducing the double
marginalization inefficiency; (ii) we show that the producer
is always better off if the retailer is able to hedge his budget
constraint—the retailer, however, might actually be worse
off when he can hedge his budget constraint; (iii) we also
show that if the retailer is able to hedge his budget con-
straint in the financial markets, then it is possible to have
a nonoperating supply chain in some circumstances. This
contrasts with the case where the retailer does not have
access to financial markets when the supply chain is always
operative.

The remainder of this paper is organized as follows.
Section 2 describes the basic supply chain model and finan-
cial market in greater detail. Sections 3 and 4 characterize
the solution of the noncooperative game under the flexi-
ble contract and the flexible contract with hedging, respec-
tively. To complete the analysis of these contracts, we also
compute the centralized solutions and use them to deter-
mine the efficiency of the noncooperative supply chain.
While the simple contract is the most commonly occurring
in practice, it is a special case of the flexible contract with
� = 0, so we do not need to analyze it separately from the
flexible contract. We conclude in §5.

2. Model Description
We now describe the model in further detail. We focus first
on the supply chain and then consider the financial markets.
Finally, we describe the three types of contracts that we
analyze in this paper.

2.1. Supply Chain

We model an isolated segment of a competitive supply
chain with one producer that produces a single product and

one retailer that faces a stochastic clearance price for this
product. (Similar models are discussed in detail in §2 of
Cachon 2003. See also Lariviere and Porteus 2001.) This
clearance price, and the resulting cash flow to the retailer,
are realized at a fixed future time T > 0. The retailer
and producer, however, negotiate the terms of a procure-
ment contract at time t = 0. This contract specifies three
quantities:

(i) A fixed procurement time � , with 0 � � � T , when
the retailer will place a single order. It is worth mention-
ing that all the results in this paper still go through if �
is allowed to be a random stopping time. The problem of
choosing the optimal stopping time, �∗ (and other exten-
sions) was formulated and solved in Caldentey and Haugh
(2006b).

(ii) A rule that specifies the size of the order, q� .
Depending on the type of contract under consideration, q�
might depend on market information available at time � .

(iii) The payment, � �q��, that the retailer pays to the
producer for fulfilling the order. Again, depending on the
type of contract under consideration, � �q�� might depend
on market information available at time � . The timing of
this payment is not important because we shall assume that
interest rates are identically zero.

We will restrict ourselves to transfer payments that are
linear on the ordering quantity, the so-called wholesale
price contract, with � �q� = wq, where w is the per-unit
wholesale price charged by the producer. We also assume
that during the negotiation of the contract, the producer acts
as a Stackelberg leader. That is, for a fixed procurement
time � , the producer moves first and proposes a wholesale
price,w� , to which the retailer then reacts by selecting the
ordering level q� .

We assume that the producer has unlimited production
capacity and that production takes place at time � with a
constant per-unit production cost equal to c� . We assume
that c� is increasing in � , thereby reflecting the fact that
it is generally costly to delay production. The producer’s
payoff as a function of the wholesale price, w� , and the
ordering quantity, q� , is given by


P �= �w� − c��q� � (1)

We assume that the retailer is restricted by a budget con-
straint that limits his ordering decisions. In particular, we
assume that the retailer has an initial budget B that might be
used to purchase product units from the producer. Depend-
ing on the type of contract under consideration, the retailer
might be able to trade in the financial market during the
time interval �0� ��, thereby transferring cash resources
from states where they are not needed to states where
they are.

For a given order quantity, q� , the retailer collects a ran-
dom revenue at time T . We compute this revenue using
a linear clearance price model. That is, given an ordering
quantity, q� , the market price at which the retailer sells
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(clears) these units is a random function, A− �q� , where
A is a nonnegative random variable and � is a positive
constant. The random variable A models the market size
that we assume is unknown while the fixed parameter, �,
captures the demand elasticity that we assume is known.
The retailer’s payoff, as a function of w� and q� , then takes
the form


R �= �A− �q��q� −w�q� � (2)

We have chosen to use a stochastic clearance price formu-
lation for the following reason. Our goal in this paper is
to highlight the benefits of using financial markets in the
context of a simple supply chain model. With this objective
in mind, we would like to use a formulation that simul-
taneously captures the stochastic nature of the retailer’s
payoff and at the same time allows us to clearly isolate
the impact that financial markets have on the supply chain
performance. A clearance price approach is better suited
to achieving this objective than say the newsvendor type
of formulation that is commonly encountered in the sup-
ply chain literature (see Cachon 2003 for a recent review
of supply chain contract models). Moreover, it is easily
justified because in practice, unsold units are generally liq-
uidated using secondary markets at discount prices. There-
fore, we can view our clearance price as the average selling
price across all units and markets.

As stated earlier, depending on the type of contract under
consideration, w� and q� can depend on market infor-
mation available at time � . Because � �q�, 
P, and 
R

are functions of w� and q� , it is also the case that these
quantities can depend on market information available at
time � .

2.2. Financial Market

The financial market is modelled as follows. Let Xt denote
the time t value of a tradeable security and let ��t�0�t�T

be the filtration generated by Xt on a given probability
space, (��� �Q). It is not the case that �T = � because
we assume that the nonfinancial random variable, A, is
� -measurable but not �T -measurable. We also assume that
there is a risk-less cash account available in which cash
can be deposited. We assume without loss of generality that
the interest rate on the cash account is identically equal to
zero. Then, the time � gain (or loss), G����, that results
from following a self-financing �t-predictable trading strat-
egy, �t , can be represented as a stochastic integral with
respect to X. (In words, a trading strategy is self-financing
if cash is neither deposited with or withdrawn from the
portfolio during the trading interval, �0� T �. In particular,
trading gains or losses are due to changes in the values
of the traded securities. See Shreve 2004 for a technical
definition of the self-financing property.) For example, in a
continuous-time setting, we have

G���� �=
∫ �

0
�s dXs� (3)

where �s represents the number of units of the tradeable
security held at time s. The self-financing property then
implicitly defines the position at time s in the cash account.
In a discrete-time setting, we have

G���� �=
�−1∑
i=0

�i�Xi+1 −Xi�� (4)

Because we have assumed that interest rates are identically
zero, there is no term in (3) or (4) corresponding to gains
or losses from the cash account holdings.

We assume that Q is an EMM so that discounted security
prices are Q-martingales. Because we have assumed that
interest rates are identically zero, however, it is therefore
the case that Xt is a Q-martingale. Subject to integrability
constraints on the set of feasible trading strategies, we also
see that Gt��� is a Q-martingale for every �t-predictable
self-financing trading strategy, �t .

Our analysis will be simplified considerably by mak-
ing a complete financial markets assumption. In partic-
ular, let G� be any suitably integrable contingent claim
that is �� -measurable. Then, a complete financial mar-
kets assumption amounts to assuming the existence of an
�t-predictable self-financing trading strategy, �t , such that
G����=G� . That is, G� is attainable. This assumption is
very common in the financial literature. Moreover, many
incomplete financial models can be made complete by sim-
ply expanding the set of tradeable securities. When this
is not practical, we can simply assume the existence of
a market maker with a known pricing function or pricing
kernel who is willing to sell G� in the marketplace (e.g.,
Duffie 2001). In this sense, we could then claim that G� is
indeed attainable. More generally, Duffie may be consulted
for further technical assumptions (that we have omitted to
specify) regarding the filtration, ��t�0�t�T , feasible trading
strategies, etc.

Regardless of how we choose to justify it, assuming
complete financial markets simplifies our analysis consid-
erably because, under this assumption, we will never need
to solve for a dynamic trading strategy, �. Instead, we will
need only to solve for a contingent claim, G� , safe in
the knowledge that any such claim is attainable. For this
reason, we will drop the dependence of G� on � in the
remainder of the paper. The only restriction we will impose
on any such trading gain, G� , is that the corresponding
trading gain process, Gs �= Ɛ�

s �G�� be a Q-martingale for
s < � . (Whenever we write Ɛ�

s �·�, it should be understood
as Ɛ��· ��s�.) In particular, we will assume that any fea-
sible trading gain, G� , satisfies Ɛ�

0 �G�� = G0, where G0

is the initial amount of capital that is devoted to trading
in the financial market. Without any loss of generality, we
will typically assume that G0 = 0. This assumption will be
further clarified in §2.3.

A key aspect of our model is the dependence between
the payoffs of the supply chain and returns in the financial
market. We model this dependence in a parsimonious way
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by assuming that returns in the financial market and the ran-
dom variable A are dependent. We will make the following
assumption regarding the conditional distribution of A.

Assumption 1. For all � ∈ �0� T �, Ɛ�
� �A�� c� .

This condition ensures that in any state at time � , there is
a production level, q � 0, for which the retailer’s expected
market price exceeds the producer’s production cost. In par-
ticular, this assumption implies that it is possible to prof-
itably operate the supply chain.

2.3. Three Contracts

The final component of our model is the contractual agree-
ment between the producer and the retailer. We consider
three different alternatives. Note that in all three cases, the
contract itself is negotiated at time t = 0, whereas the actual
physical transaction takes place at time � � 0.
• Simple Contract (S-Contract): In the case of the

simple contract, the negotiation and physical transaction
both take place at the beginning of the planning horizon
so that we have � = 0. In this case, the financial market
is not used in the design of the contract, and our model
reduces to the traditional wholesale price contract. That is,
the producer, acting as a Stackelberg leader, offers a fixed
wholesale price, w0, at time t = 0. The retailer, acting as
a follower, then determines the quantity, q0, that he will
purchase. The budget constraint in this case takes the form
w0q0 � B, where B is the retailer’s available budget.
• Flexible Contract (F-Contract): In the case of the

flexible contract, the physical transaction is postponed to
a future date � ∈ �0� T �. In this case, the two parties are
able to negotiate at time t = 0 a contract contingent on
the public history, �� , that is available at time � . Specifi-
cally, at time t = 0, the producer offers an �� -measurable
wholesale price, w� , to the retailer. In response to this offer,
the retailer decides on an �� -measurable ordering quan-
tity, q� = q�w��. There is a slight abuse of notation here
and throughout the paper when we write q� = q�w��. This
expression should not be interpreted as implying that q�
is a function of w� because this would imply that q� is
measurable with respect to the �-algebra generated by w� .
However, we require only that q� be �� -measurable, so a
more appropriate interpretation is to say that q� = q�w�� is
the retailer’s response to w� .

In this, the flexible contract, we assume that the retailer
does not hedge his budget constraint by trading in the finan-
cial market. Hence, the financial market acts exclusively
as a source of public information used to define the terms
of the contract. As a result, the budget constraint takes
the form

w�q� � B for all � ∈��

We note that the S-contract is a special case of the
F-contract with � = 0.

• Flexible Contract with Hedging (H-Contract):
A flexible contract with hedging is similar to the flexible
contract, but now the retailer has access to the financial
markets. In particular, the retailer can use the financial mar-
ket to hedge the budget constraint by purchasing at date
t = 0 a contingent claim, G� , that is realized at date � and
that satisfies Ɛ�

0 �G��= 0. Given an �� -measurable whole-
sale price, w� , the retailer purchases an �� -measurable con-
tingent claim, G� , and selects an �� -measurable ordering
quantity, q� = q�w��, to maximize the economic value of
his profits. Because of his access to the financial markets,
the retailer can weaken the budget constraint, which now
becomes

w�q� � B+G� =� B� for all � ∈��

Because the no-trading strategy with G� ≡ 0 is always an
option, it is clear that for a given wholesale price, w� , the
retailer is always better off by trading in the financial mar-
ket. Whether or not the retailer will still be better off in
equilibrium when he has access to the financial market will
be discussed in §4.

By using a flexible contract, the parties postpone their
transaction to a future time and in the process improve their
estimates of the market clearance price. In this respect, our
flexible contracts are very much related to the literature
on supply chain contracts with demand forecast updating
(e.g., Donohue 2000). In our case, however, the additional
information comes from the financial market and its co-
dependence with the market clearance price. This feature
differs substantially from previous models that normally
relate new market information to marketing research and
early order commitments (e.g., Azoury 1985, Eppen and
Iyer 1997). As well as being a source of information upon
which a contract can be based, however, financial markets
also enable the players to hedge their cash flows. In partic-
ular, the difference between the equilibrium solutions of the
F-contract and H-contract will help us quantify the impact
that financial trading has on the supply chain performance.

Before proceeding to analyze these contracts, a number
of further clarifying remarks are in order.

(1) Our model assumes a common knowledge frame-
work in which all parameters of the model are known
to both agents. Because of the Stackelberg nature of the
game, this assumption implies that the producer knows the
retailer’s budget, B, and that both agents use the same
EMM to compute the distribution of the market demand.
These common knowledge assumptions, although standard
in the supply chain management literature, can be too
strong in some situations. In this respect, we view our for-
mulation as a starting point for a more realistic (yet com-
plex) model with asymmetric information.

(2) We also make the implicit assumption that the only
information available regarding the random variable, A, is
what we can learn from the evolution of Xt in the time
interval �0� ��. If this were not the case, then the trading
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strategy in the financial market could depend on some
nonfinancial information, so it would not be necessary to
restrict the trading gain, G� , to be �� -measurable. More
generally, if Yt represented some nonfinancial noise that
was observable at time t, then the trading strategy, �t ,
would need only to be predictable with respect to the fil-
tration generated by X and Y . In this case, the complete
financial market assumption is of less benefit, and it would
be necessary for the retailer to solve the considerably harder
problem of finding the optimal � to find the optimal G� .

(3) In this model, the producer does not trade in the
financial markets because, being risk neutral and not
restricted by a budget constraint, he has no incentive to
do so. In particular, the Q-martingale property of self-
financing trading strategies implies that if the producer
devoted an initial capital, F0, to trading, then we would
need to include a term −F0 +Ɛ�

0 �F� � in his objective func-
tion. Here, F� denotes the time � value of the producers’s
financial portfolio that results from adopting some self-
financing trading strategy. However, the Q-martingale prop-
erty of trading gains implies that this term is identically
zero for all such strategies (subject to technical conditions
that we mentioned in the previous subsection), so the finan-
cial markets provide no benefit to the producer.

(4) A potentially valid criticism of this model is that,
in practice, a retailer is often a small entity and might not
have the ability to trade in the financial markets. There
are a number of responses to this. First, we use the word
“retailer” in a loose sense so that it might in fact represent
a large entity. For example, an airline purchasing aircraft is
a “retailer” that certainly does have access to the financial
markets. Second, it is becoming ever cheaper and easier for
even the smallest “player” to trade in the financial markets.
Finally, even if the retailer does not have access to the
financial market, then the producer, assuming he is a big
“player,” can offer to trade with the retailer or act as his
financial broker. As we shall see in §4, it would always be
in the producer’s interest to do so.

(5) We claimed earlier that, without loss of generality,
we could assume that G0 = 0. This is clear for the fol-
lowing reason. If G0 = 0, then with a finite initial budget,
B, the retailer has a terminal budget of B� = B+G� with
which he can purchase product units at time � and where
Ɛ�

0 �G�� = 0. If he allocated a > 0 to the trading strategy,
however, then he would have a terminal budget of B� =
B− a+G� at time � but now with Ɛ�

0 �G��= a. That the
retailer is indifferent between the two approaches follows
from the fact any terminal budget, B� , that is feasible under
one modelling approach is also feasible under the other,
and vice-versa.

(6) Another potentially valid criticism of this framework
is that the class of contracts is too complex. In particular,
by insisting only that w� is �� -measurable, we are per-
mitting wholesale price contracts that might be too com-
plicated to implement in practice. If this is the case, then
we can easily simplify the set of feasible contracts. By

using appropriate conditioning arguments, for example, it
would be straightforward to impose the tighter restriction
that w� be ��X��-measurable instead, where ��X�� is the
�-algebra generated by X� .

It would also be possible to limit the retailer to a simple
class of strategies such as the classic buy-and-hold strat-
egy, where at t = 0 the retailer purchases a fixed number
of futures contracts and/or options on the futures contract.
This position is then held until time � , when it is unwound.
We expect the results of this paper would also hold under
this class of trading strategy, but the analysis would be
more cumbersome with no additional insight.

It is also worth noting at this point that the contracts we
consider in this paper are all based on public and observ-
able information. This is in contrast to many of the con-
tracts that have been studied in the literature to date that
rely on private and not easily verifiable information such as
manufacturing costs or product demand. We would there-
fore argue that the contracts studied in this paper are in
fact easier than the traditional contracts to implement in
practice.

(7) Finally, we emphasize that this paper does not
address mechanism design, i.e., determining the best con-
tract to use, nor does it address how we could achieve
full coordination of the supply chain. Instead, we focus on
introducing financial markets and market information into
the design of the most popular and widely used contract
(the wholesale price contract) to improve its efficiency.

We complete this section with a summary of the notation
and conventions that will be used throughout the remain-
der of the paper. The superscripts S, F, and H are used
to denote quantities related to the S-contract, F-contract,
and H-contract, respectively. The subscripts R, P, and C are
used to denote quantities related to the retailer, producer,
and central planner, respectively. The subscript � is used
to denote the value of a quantity conditional on time �
information. For example, 
H

P � � is the producer’s time �
expected payoff under the H-contract. The expected value,
Ɛ�

0 �

H
P � � �, is simply denoted by 
H

P , and similar expres-
sions hold for the retailer and central planner. Any other
notation will be introduced as necessary.

3. Flexible Contract
We now study the F-contract in which the producer offers
a wholesale price, w� , to the retailer who then selects a
corresponding q� = q�w��.

3.1. Decentralized Solution

In response to the wholesale price menu, w� , the retailer
selects a menu of ordering quantities, q� = q�w��, by solv-
ing the following optimization problem:


F
R�w��= Ɛ�

0

[
max
q��0

�Ɛ�
� ��A− �q� −w��q���

]
subject to w�q� � B for all � ∈��
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Note that the expectation inside the max operator is con-
ditional on �� . So for each possible realization of X until
time � , the retailer determines the optimal quantity, q� , by
solving a procurement problem with wholesale price, w� ,
and budget constraint w�q� � B. The retailer’s problem
therefore decouples for each such realization of X. Let us
define Ā� �= Ɛ�

� �A� and Ā �= Ɛ�
0 �Ā� �.

Straightforward calculations show that the solution to the
conditional optimization problem is given by

q�w��=min
{(

Ā� −w�

2�

)+
�
B

w�

}
� (5)

The negative effect of the budget constraint on the optimal
ordering quantity is clear from (5). Given this, the retailer’s
best-response strategy, the producer solves


F
P = Ɛ�

0

[
max
w��c�

��w� − c��q��w���
]
�

As was the case with the retailer’s problem, the producer’s
optimization problem decouples for each realization of X
until time � . We use the notation 
F

P � � and 
F
R � � to denote

the payoffs of the producer and retailer, respectively, con-
ditional on �� .

Proposition 1 (Flexible Contract Solution). Under
Assumption 1, the equilibrium solution for the flexible
contract is

wF
� =

Ā� + #F
�

2
and qF

� =
Ā� − #F

�

4�
� (6)

where

#F
� �=max

{
c��

√
�Ā2

� − 8�B�+
}
�

The equilibrium expected payoffs of the players are then
given by


F
P � � =

�Ā� + #F
� − 2c���Ā� − #F

� �

8�
and


F
R � � =

�Ā� − #F
� �

2

16�
� (7)

Proof. The proof of this result is straightforward and is
therefore omitted.

For notational simplicity, we have not made explicit the
dependence of the equilibrium wholesale price, ordering
quantity, and players’ payoffs on the budget B. We will
make this a general rule in this and the following sections.

The auxiliary parameter, #F
� , can be interpreted as a mod-

ified production cost, greater than or equal to the original
cost c� that is induced by the budget, B. That is, the state-
dependent noncooperative equilibrium in (6) is the same
equilibrium that one would obtain if the producer’s produc-
tion cost were #F

� and the supplier had an unlimited budget.
We can think of this modified cost, #F

� , as a negative (ran-
dom) externality that a limited budget imposes on the entire
supply chain. The following is a direct consequence of the
previous result.

Corollary 1. For every � ∈ �, the optimal wholesale
price, wF

� , and optimal quantity, qF
� , are nonincreasing and

nondecreasing, respectively, as a function of the budget B.
Furthermore,

lim
B↓0

wF
� = Ā� and lim

B↓0
qF
� = 0�

The corresponding payoffs, 
S
R � � and 
S

P � � , are nonde-
creasing in B and vanish as B ↓ 0.

Note that the optimal wholesale price, wF
� , increases as

the budget, B, decreases. That is, the more cash-constrained
the retailer is, the higher the wholesale price charged by the
producer. In fact, the limiting value, Ā� , is the maximum
price that the producer can charge and still have an opera-
tive supply chain; see Equation (5). Note also from Equa-
tions (6) and (7) that when the budget is limited, that is B <
BF
� �= �Ā2

� − c2
� �/8�, the wholesale price, ordering quantity,

and retailer’s payoff are independent of the manufacturing
cost c� . This threshold, BF

� , is the budget above which the
unconstrained optimal solution is achieved for a given path.

We now compare the equilibrium and the expected prof-
its of the agents as a function of � . More specifically, we
compare the flexible contract where � > 0 with the simple
contract where � = 0. This comparison is relevant because
it reveals the agents’ incentives to induce the other party to
select one type of contract versus the other. We note that
this is not a straightforward comparison because the pro-
duction costs are different under the two contracts. Let us
denote by 
F

P �= Ɛ�
0 �


F
P � � � the producer’s expected payoff

under a flexible contract. Similar notation is used for the
retailer, and the superscript “S” will refer to the equilibrium
solution of the simple contract.

Proposition 2. Suppose that B � BF
� almost surely and

B� �A2 − c2
0�/8�. Then,

Ɛ�
0 �w

F
� ��wS� Ɛ�

0 �q
F
� ��qS� 
F

P�
S
P� and 
F

R�
S
R�

Furthermore, in the limit,

lim
B↓0


F
P


S
P

= 1

Ā− c�

(
Ā− c�Ɛ

�
0

[
A

Ā�

])
� 1 and

lim
B↓0


F
R


S
R

= Ɛ�

[
Ā

Ā�

]
� 1�

However, if B � BF
� almost surely and B � �A2 − c2

0�/8�,
then

Ɛ�
0 �w

F
� �=wS + c� − c0

2
and Ɛ�

0 �q
F
� �= qS − c� − c0

4�
�

In addition,


F
P �
S

P and 
F
R �
S

R if and only if

Var�Ā��+ c2
� − c2

0 � 2Ā�c� − c0��

Proof. See the appendix.

Proposition 2 compares the supply chain behavior under
the simple and flexible contracts as a function of B. If
the retailer’s budget is small, then the producer is worse
off using the F-contract, whereas the retailer is better off.



Caldentey and Haugh: Supply Contracts with Financial Hedging
54 Operations Research 57(1), pp. 47–65, © 2009 INFORMS

However, when the budget is large, then the agents’ prefer-
ences over the contract depend on the additional condition
Var�Ā�� + c2

� − c2
0 � 2Ā�c� − c0�. This condition will be

satisfied when the variance Var�Ā�� is large and/or the cost
differential c� − c0 is small.

Proposition 2 provides only a partial characterization of
the agents’ preferences over the two types of contracts. In
particular, the result does not cover those cases in which
the budget has an intermediate value that can be greater
than BF

� for some realizations of X (up to time �) and less
than BF

� for other realizations. In this case, the comparison
between the contracts depends on the specific value of B
and the distribution of Ā� and must be done on a case-by-
case basis. The example of Figure 1 assumes a uniform dis-
tribution for Ā� . In Case 1 (see the upper set of graphs), the
condition Var�Ā��+c2

�−c2
0 � 2Ā�c�−c0� is satisfied, while

in Case 2 (see the lower set of graphs), the condition is not
satisfied. The graphs on the left show the average whole-
sale price for the flexible and simple contracts. The graphs
in the middle compare the ordering levels, while the graphs
on the right plot the ratio of the players’ payoffs under the
two types of contracts. In Case 1, both players prefer the
flexible contract when the budget is large and the reverse
conclusion holds in Case 2. Furthermore, when the budget
is small, the retailer prefers the F-contract and the producer
prefers the S-contract. This observation suggests that the
producer is not able to profit from his leadership position in

Figure 1. Flexible vs. simple contract.
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cases, � = 1, c0 = 0�3.

the Stackelberg game when B is small. These observations
are consistent with Proposition 2.

3.2. Centralized Solution

To study the efficiency of the noncooperative or decen-
tralized solution, we first need to compute the centralized
solution for the flexible contract model. The centralized
solution is found by assuming that a central planner, with
the same initial budget B, solves


F
C = Ɛ�

0

[
max
q��0

�Ɛ�
� ��A− �q� − c��q���

]
subject to c�q� � B for all � ∈��

The optimal solution, under Assumption 1, is

qF
C�� =

Ā�−#F
C��

2�
� where #F

C�� �=max
{
c��Ā�−

2�B
c�

}
� (8)

Defining BF
C � � �= c��Ā� −c��/2�, we obtain that the central

planner’s expected payoff is given by


F
C � � =


B

c2
�

(
c��Ā� − c��− �B

)
if B� BF

C � � �

�Ā� − c��
2

4�
if B� BF

C � � �
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As was the case with the decentralized solution, the opti-
mal quantity for the centralized solution, qF

C � � , is nonde-
creasing in B and goes to zero as B ↓ 0. The threshold,
BF

C � � , is the limiting budget above which the centralized
solution reaches the unconstrained optimal value, qF

C � � =
�Ā� − c��/2�.

As was the case with Proposition 2, the following result
compares the payoff of the central planner under the simple
and flexible contracts.

Proposition 3. Suppose that B � c��Ā� − c��/2� almost
surely and B� c0�Ā− c0�/2�. Then,


F
C �
S

C if and only if �c2
� − c2

0��B� Āc0c��c� − c0��

However, if B� c��Ā� − c��/2� almost surely, then


F
C�
S

C if and only if Var�Ā��+c2
�−c2

0 �2Ā�c�−c0��

The proof of Proposition 3 is very similar to the proof
of Proposition 2 and is therefore omitted. We see from
the first part of the proposition that as B ↓ 0, the central
planner prefers the flexible contract. Note that the second
part of the proposition is based on the same condition that
we derived for the noncooperative game. Therefore, for B
sufficiently large, the retailer, the producer, and the central
planner either all prefer the flexible contract or all prefer
the simple contract.

3.3. Efficiency of the Centralized Solution

Let us now look at the efficiency of the decentralized
solution by comparing it to the centralized solution. We
first characterize the pathwise efficiency of the F-contract,
that is, the efficiency for a given outcome in �� . We will
then examine the unconditional efficiency of the contract
as perceived at time t = 0.

We introduce the following ratios:

�F
� �=

qF
�

qF
C � �

and � F
� �= wF

�

c�
�

The first ratio, �F
� , measures the degree of inefficiency

of the decentralized solution in terms of production out-
put. The second ratio, � F

� , captures the margin over and
above the production cost charged by the producer. Natu-
rally, � F

� � 1, so it follows that �F
� � 1. This inefficiency

of the decentralized solution has long been recognized in
the economics literature and goes under the name of dou-
ble marginalization (e.g., Spengler 1950). We characterize
these performance ratios here in the context of a budget
constraint.

By Corollary 1, the double marginalization ratio, � F
� ,

is a nonincreasing function of B and satisfies limB↓0 �
F
� =

Ā�/c� . The ratio, �F
� , satisfies

�F
� =



c�

(
Ā� −

√
Ā2
� − 8�B

)
4�B

if B� BF
C � � ∧BF

� �

Ā� −
√
Ā2
� − 8�B

2�Ā� − c��
if BF

C � � � B� BF
� �

c��Ā� − c��

4�B
if BF

C � � � B� BF
� �

1/2 if B� BF
C � � ∨BF

� �

where x∨ y �=max�x� y� and x∧ y �=min�x� y�.
Depending on the values of the average market size, Ā� ,

and production cost, c� , either BF
C � � � BF

� or BF
C � � � BF

� . For
this reason, we have to distinguish four possible cases in
the computation of �F

� as above. It is straightforward to
show that BF

C � � � BF
� if and only if Ā� � 3c� .

The monotonicity of � F
� implies that �F

� increases in B
in the range B ∈ �0�BF

C � � ∧BF
� �. Within this range, smaller

budgets therefore hurt the efficiency of the supply chain
with respect to the centralized solution more than larger
budgets. In the limit, we obtain

lim
B↓0

�F
� =

c�

Ā�

�

For B� BF
C � � ∨BF

� , however, the ratio �F
� remains constant

at 1
2 .
In the range BF

C � � ∧BF
� � B� BF

C � � ∨BF
� , the behavior of

�F
� is different depending on the relationship between BF

C � �
and BF

� . If BF
C � � � BF

� , then �F
� is increasing in B. If BF

� �

BF
C � � , then �F

� is decreasing in B. In both cases, however, the
double marginalization inefficiency is minimized at B= BF

� .
To analyze the overall efficiency of the F-contract, we

look at the competition penalty, �F
� (e.g., Cachon and

Zipkin 1999), which is defined as

�F
� �= 1−

(

F

R � � +
F
P � �


F
C � �

)
�

It is clear that �F
� ∈ �0�1� with �F

� = 0, implying that the
decentralized chain is perfectly coordinated and achieving
the same expected profit as the centralized system. When
�F

� = 1, however, the system is completely inefficient. In
our setting, we can write the competition penalty as follows:

�F
� = 1−

(
Ā� − c� − �qF

�

Ā� − c� − �qF
C � �

)
�F
� �

Proposition 4. The competition penalty, as a function
of B, is characterized as follows:

�F
� =



decreases in B if B� BF
C � � ∧BF

� �

decreases in B if BF
C � � � B� BF

� �

increases in B if BF
� � B� BF

C � � �

1/4 if B� BF
C � � ∨BF

� �
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Figure 2. �F
� , �

F
� , and �F

� are plotted against B for the flexible contract.
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Proof. The proof is straightforward and is therefore
omitted.

Figure 2 summarizes the solution for the F-contract for
a given realization in �� . The graphs on the top row corre-
spond to the case BF

C � � � BF
� , while those on the bottom row

correspond to BF
� � BF

C � � . The graphs on the left plot the
quantity ratio, �F

� , the graphs in the middle plot the dou-
ble marginalization ratio, � F

� , and the graphs on the right
plot the competition penalty, �F

� . In the case BF
� � BF

C � � ,
or equivalently Ā� � 3c� , the competition penalty is mini-
mized at B= BF

� and takes the value

�F
min �X = �5c� − Ā���Ā� − c��

�Ā� + c���7c� − Ā��
�

1
4
�

If Ā� = c� , note that the competition penalty vanishes but
this is only due to the fact that q = 0 for both the decen-
tralized and centralized supply chains.

Thus far, the efficiency of the F-contract has been dis-
cussed in a pathwise fashion that is conditional on �� .
We now consider the unconditional efficiency. In particular,
we are interested in characterizing the expected production
efficiency, �F �= Ɛ�

0 ��
F
� �, the expected double marginaliza-

tion, � F �= Ɛ�
0 ��

F
� �, and the expected competition penalty,

�F �= Ɛ�
0 ��

F
� �.

The computation of these quantities follows directly
from our previous analysis, although the computations are
rather tedious due to the number of different cases that arise
in terms of B, BF

� , and BF
C � � . The following proposition

summarizes the unconditional efficiency of the F-contract
in the limiting cases B ↓ 0 and B ↑�.

Proposition 5. In the limit as the budget, B, goes to zero,
we obtain

lim
B↓0

�F = Ɛ�

[
c�

Ā�

]
�

c�

Ā
� lim

B↓0
� F = Ā

c�
� and

lim
B↓0

�F = 1− Ɛ�

[
c�

Ā�

]
�

Ā− c�

Ā
�

As B→�, we obtain

lim
B↑�

�F = 1
2
� lim

B↑�
� F = Ā+ c�

2c�
� and lim

B↑�
�F = 1

4
�

Proof. The proof follows from the nonnegativity of Ā� , the
bounded convergence theorem, and Jensen’s inequality. �

Proposition 5 implies that for B ↓ 0 or B ↑ �, the
expected double marginalization, � F, decreases with � .
That is, production postponement reduces, on average, the
producer’s margin. On the other hand, the competition
penalty is maximized at � = 0 for B small and it is constant,
independent of � , for B large.

4. Flexible Contract with Financial
Hedging

We now consider the H-contract that is the flexible con-
tract, but where the retailer now has access to the finan-
cial markets. The complete financial markets assumption
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implies that the retailer can modify his budget by pur-
chasing any �� -measurable financial claim, G� , where, as
usual, ��t�0�t�T is the filtration generated by the financial
noise, Xt . Assuming without loss of generality (see §2.3
for details) that an initial capital of zero is devoted to the
financial hedging strategy, we then have Ɛ�

0 �G��= 0. The
retailer’s budget at time � is then given by B� = B+G� . By
optimizing over G� , the retailer can transfer cash resources
from states where the budget constraint is not binding to
states where it is. In a partial equilibrium setting, that is
for a fixed w� , it is clear that the retailer will prefer the
H-contract to the F-contract. In our competitive setting,
however, this is no longer clear. In fact, we shall see that
on some occasions the retailer will prefer the H-contract,
but on other occasions he will prefer the F-contract. We
shall see that the producer, however, will always prefer the
H-contract to the F-contract.

4.1. Decentralized Solution

The sequence of events in the H-contract setting is as fol-
lows. At time t = 0, the producer offers a menu of wholesale
prices, w� . In response, the retailer selects a menu of order-
ing quantities, q� = q�w��, as well as an �� -measurable
financial claim, G� , that satisfies Ɛ�

0 �G��= 0. At time � , the
outcome is observed and the producer immediately manu-
factures q� product units, which he then sells to the retailer
at a per-unit price of w� . By construction, the retailer’s bud-
get, B� , is sufficient to pay the producer for these units.
Finally, the retailer sells all the units in the retail market at
time T at the stochastic per-unit clearance price, A− �q� .

The distinguishing feature of the H-contract is that the
budget constraint is now a pathwise constraint of the form

w�q� � B� for all � ∈��

where Ɛ�
0 �B��= B. The retailer’s problem is then given by


H
R�w��= max

q��0�B�
Ɛ�

0 ��Ā� − �q� −w��q�� (9)

subject to w�q� � B� for all � ∈�� (10)

Ɛ�
0 �B��= B� (11)

Note that it is no longer possible to decouple the problem
and solve it separately for every realization of X (up to
time �), as we did with the F-contract. This is because
the new constraint, Ɛ�

0 �B�� = B, binds the entire problem
together. We have the following solution to the retailer’s
problem.

Proposition 6 (Retailer’s Optimal Strategy). Let w�

be the menu of wholesale prices offered by the producer
and let �� , � and � c be defined as follows�

�� �=
(
Ā� −w�

2�

)+
� � �= �� ∈�� B� ��w��� and

� c �=�−� �

The following two cases arise in the computation of
the optimal ordering quantity, q�w��, and the financial
claim, G� .

Case 1. Suppose that ƐQ0 ���w��� B. Then, q�w��= �� ,
and there are infinitely many choices of the optimal
claim, G� . One natural choice is to take

G� = ���w� −B� ·
{
# if � ∈��

1 if � ∈� c�

# �=
∫
�c ���w� −B�d�∫
� �B−��w��d�

�

In this case (possibly due to the ability to trade in the
financial market), the budget constraint is not binding.

Case 2. Suppose that B < Ɛ�
0 ���w��. Then,

q��w��=
(
Ā� −w��1+'

2�

)+
and G� = q��w��w� −B�

where '� 0 solves

Ɛ�
0

[
w�

(
Ā� −w��1+'�

2�

)+]
= B�

Proof. It is straightforward to see that �� is the retailer’s
optimal ordering level given the wholesale price menu, w� ,
in the absence of a budget constraint. To implement this
solution, the retailer would need a budget ��w� for all
� ∈�. Therefore, if the retailer can generate a financial
gain, G� , such that ��w� � B + G� for all � ∈ �, then
he would be able to achieve his unconstrained optimal
solution.

By definition, � contains all those states for which
B� ��w� . That is, the original budget B is large enough to
cover the optimal purchasing cost for all � ∈� . However,
for � ∈� c, the initial budget is not sufficient. The financial
gain, G� , then allows the retailer to transfer resources from
� to � c.

Suppose that the condition in Case 1 holds so that
Ɛ�

0 ���w��� B. Note that according to the definition of G�

in this case, we see that B+G� = ��w� for all � ∈� c. For
� ∈� , however, B+G� = �1−#�B+#��w� � ��w� . The
inequality follows because #� 1. G� therefore allows the
retailer to implement the unconstrained optimal solution.
The only point that remains to check is that G� satisfies
Ɛ�

0 �G��= 0. This follows directly from the definition of #.
Suppose now that the condition specified in Case 2 holds.

We solve the retailer’s optimization problem in (9) by relax-
ing the gain constraint (11) with a Lagrange multiplier, '.
We also relax the budget constraint in (10) for each real-
ization of X up to time � . The corresponding multiplier for
each such realization is denoted by (�d�, where (� plays
the role of a Radon-Nikodym derivative of a positive mea-
sure that is absolutely continuous with respect to �. The
first-order optimality conditions for the relaxed version of
the retailer’s problem are then given by

q� =
�Ā� −w��1+(���

+

2�
�

(� = '� (��w�q� −B+G��= 0� (� � 0� and

Ɛ�
0 �G��= 0�
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It is straightforward to show that the solution given in
Case 2 of the proposition satisfies these optimality condi-
tions; only the nonnegativity of (� needs to be checked sep-
arately. To prove this, note that (� = '; therefore, it suffices
to show that '� 0. This follows from three observations:

(a) Because 0 � w� , the function Ɛ�
0 �w���Ā� −

w��1+'��/2��+� is decreasing in '.
(b) In Case 2, by hypothesis, we have

Ɛ�
0

[
w�

(
Ā� −w�

2�

)+]
= Ɛ�

0 ���w�� > B�

(c) Finally, we know that ' solves

Ɛ�
0

[
w�

(
Ā� −w��1+'�

2�

)+]
= B�

Observations (a) and (b) therefore imply that we must have
'� 0. �

Case 1 of Proposition 6 describes the circumstances
when trading in the financial market allows the retailer to
completely remove the budget constraint from his optimiza-
tion problem. When these circumstances are not satisfied
as in Case 2, the retailer cannot completely remove the
budget constraint. He can, however, mitigate the effects of
the budget constraint somewhat so that for a fixed menu
of wholesale prices, w� , he prefers the H-contract to the
F-contract.

Based on the retailer’s best-response strategy derived in
Proposition 6, the producer’s problem can be formulated as


H
P = max

w� �'�0
Ɛ�

0

[
�w� − c��

(
Ā� −w��1+'�

2�

)+]
(12)

subject to Ɛ�
0

[
w�

(
Ā� −w��1+'�

2�

)+]
� B� (13)

Note that at the optimal solution, the constraint in (13) will
be tight if the optimal ' is greater than zero. This will occur
only when the budget constraint is binding.

The following result characterizes the solution of this
problem and the corresponding solution of the Stackelberg
game.

Proposition 7 (Producer’s Optimal Strategy and
the Stackelberg Solution). Let )H be the minimum
)� 1 that solves

Ɛ�
0

[(
Ā2
� − �)c��

2

8�

)+]
� B�

Define #H �= )Hc� ; then, the optimal wholesale price and
ordering level satisfy

wH
� = Ā� + #H

2
and qH

� =
(
Ā� − #H

4�

)+
� (14)

The players’ expected payoffs satisfy


H
P � � =

�Ā� + #H − 2c���Ā� − #H�+

8�
and


H
R � � =

��Ā� − #H�+�2

16�
�

(15)

Proof. See the appendix.

As before, we interpret #H as a modified production cost,
greater than or equal to the the original cost, c� , that is
imposed in the supply chain because of the limited budget.
Unlike the setting of the F-contract, however, the modi-
fied cost in this setting is not stochastic. Note that #H is
nondecreasing in B. Hence, as in the F-contract, the more
cash constrained the retailer, the higher the wholesale price
charged by the producer.

Suppose now that the budget is limited so that #H > c� .
Then, depending on the value of #H, Proposition 7 implies
that it is possible for wH

� � Ā� and qH
� = 0 for some out-

comes � ∈�. That is, in some cases the producer decides
to overcharge the retailer and therefore make the supply
chain nonoperative. Because of Assumption 1, this behavior
was never optimal in the setting of the F-contract. It occurs
in the H-contract setting, however, because the retailer can
allocate his limited budget among different states � ∈�. In
particular, if the retailer knows that for some outcomes, �,
he will not be purchasing any units, then he can transfer the
entire budget B from these (nonoperative) states to states
in which there is a need for cash. It is in the producer’s
interest, then, to select those states in which he wants to
do business with the retailer and those in which he does
not. Note that qH

� = 0 if and only if Ā� � #H. Hence, the
producer “closes” the supply chain when the forecasted
demand is low.

We now compare the F-contract with the H-contract in
terms of the players expected payoffs under the Stackelberg
equilibrium. First, we define

�̂ �= �� ∈�� #F
� = c���

where #F
� was defined in Proposition 1 in §3. The set

�̂ characterizes those states, �, for which the flexi-
ble contract achieves the unconstrained optimal solution,
wF

� = �Ā� + c��/2 and qF
� = �Ā� − c��/4�. We also recall

that the equilibrium wholesale prices and ordering levels
for the F-contract and H-contract are

wF
� =

Ā� + #F
�

2
� qF

� =
Ā� − #F

�

4�
and

wH
� = Ā� + #H

2
� qH

� = �Ā� − #H�+

4�
�

respectively. The difference between the expected payoffs
of these two contracts depends on the difference between
#F
� and #H, which in turn depends on the set �̂ . We

now show that the producer’s expected payoff under the
H-contract is always greater than his expected payoff under
the F-contract.

Proposition 8. The producer is always better off if the
retailer is able to hedge the budget constraint.
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Proof. See the appendix.

According to this result, it is in the producer’s interest
to promote the retailer’s ability to trade in the financial
market. If the retailer is a small player with limited access
to the financial markets, then it would be in the producer’s
interest to serve as an intermediary between the retailer and
the financial markets.

From the retailer’s perspective, the comparison between
the F-contract and the H-contract is not so straightforward.
We identify three cases.
• Case 1. Suppose that �̂ =�. In this case, B is suffi-

ciently large so that #F
� = #H = c� for all � ∈� and the two

contracts produce the same output. This is not surprising
because for large budgets, financial trading does not offer
any advantage.
• Case 2. Suppose that �̂ �=� and #H = c� . In this case,

#F
� > c� for all � ∈ �̂ c. Therefore, wH

� � wF
� and qH

� � qF
�

for all � ∈� with strict inequalities in �̂ c. With regard to
the payoffs, using Equations (7) and (15) we can conclude
that for all � ∈�,


H
R � � �
F

R � � �

with strict inequality in �̂ c. Note that this case summarizes
well the advantages of using financial trading: the ability to
trade has increased the output of the supply chain, reduced
the wholesale price, reduced the double marginalization
inefficiency, and increased the payoff of both agents. These
conclusions hold for all � ∈� in this case. Therefore, they
hold in expectation, so that Ɛ�

0 �

H
R � � �� Ɛ�

0 �

F
R � � �.

• Case 3. Suppose that �̂ �= � and #H > c� . In this
case, #F

� < #H for � ∈ �̂ and the wholesale price (order-
ing quantity) is smaller (higher) under the F-contract than
under the H-contract. In terms of payoffs, the retailer (and
the producer as well) therefore prefers the F-contract to
the H-contract for � ∈ �̂ . Of course, the choice of the
contract has to be made at t = 0 when the realization of
� is still unknown. Therefore, the appropriate comparison
between the contracts should be based on their time t = 0
expected payoffs. As the following example shows, how-
ever, the retailer can be better off or worse off under the
H-contract.

Example 1. Consider the special case in which Ā� takes
only the values �5�10� with equal probability and 8� = 1
and B= 9�5.

If c� = 1, then we can show that #H = 9 > c� and
Ɛ�

0 �

H
R � � �= 0�25 and Ɛ�

0 �

F
R � � �= 0�342.

If c� = 4�5, then #H = 9 > c� and Ɛ�
0 �


H
R � � �= 0�25 and

Ɛ�
0 �


F
R � � �= 0�122.

Example 1 shows that in some cases, the retailer can
be worse off when he uses the financial market to hedge
his budget constraint. In this case, the manufacturer is able
to set a wholesale contract, wH

� , that exploits the retailer’s
ability to trade in the financial market to extract more of

his operating profits. Hence, even if the retailer has access
to the financial market, he might want the manufacturer
to be unaware of this fact to induce the latter to offer the
F-contract wF

� instead of the H-contract wH
� . Of course, this

strategy can work only if the manufacturer is unable to
observe whether or not the retailer is able to trade in the
financial market. With asymmetric information, the manu-
facturer would have to set a different wholesale contract w�

to handle this adverse selection problem.
When the budget B is sufficiently large (see Cases 1

and 2 above), the retailer is always better off using the
H-contract. It turns out that under some additional condi-
tions, we can show that for sufficiently small B the retailer
is also better off under the H-contract. Therefore, it is only
for intermediate value of B that the retailer might prefer
the F-contract over the H-contract.

Proposition 9. Suppose that the random variable Ā� has
a bounded support and admits a smooth density bounded
away from zero. Furthermore, assume that Ā� > c� for all
� ∈�. Then, as B ↓ 0, we obtain

Ɛ�
0 �


F
R � � �= �B2Ɛ�

0

[
1

Ā2
�

]
+O

(
B3
)

and Ɛ�
0 �


H
R � � ��KB3/2

for some constant K > 0. Hence, for B sufficiently small,
Ɛ�

0 �

F
R � � �� Ɛ�

0 �

H
R � � �.

Proof. See the appendix.

According to the previous discussion, if #H = c� , then
both players are better off using the H-contract, so it fol-
lows that the entire supply chain is also better off. For
the case #H > c� , it is possible that the retailer prefers the
F-contract and so it is not clear which contract has a higher
total expected payoff, i.e., the sum of the retailer’s and pro-
ducer’s expected profits.

Figure 3 shows the performance of the F-contract and the
H-contract in terms of expected wholesale price, ordering
level, and players’ payoffs, as a function of the budget, B.
It might be seen that if the budget is small, then on aver-
age, the wholesale price is smaller and the ordering level
is higher for the F-contract than for the H-contract. This
situation is reversed as the budget increases. In terms of the
payoffs, both agents prefer the H-contract to the F-contract
for all levels of B in this particular example. Furthermore,
the benefits of the H-contract with respect to the F-contract
are most pronounced for intermediate values of B.

4.2. Centralized Solution

We now solve the centralized solution when the central
planner is permitted to hedge the budget constraint. The
central planner’s problem is similar to the retailer’s problem
in (9)–(11). The only difference is that in this centralized
operation, the procurement cost is c� instead of w� :


H
C = max

q� �B�
Ɛ�

0 ��Ā� − �q� − c��q�� (16)

subject to c�q� � B� for all � ∈�� (17)

Ɛ�
0 �B��= B� (18)
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Figure 3. Performance of the F-contract and the H-contract as a function of the budget.
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Note. The demand parameter Ā� is uniformly distributed in �1�3�, � = 1, and c� = 0�5.

Note that we have assumed that the central planner’s
budget is the same as the one that the retailer has in
the decentralized solution. We make this assumption to
compare the efficiency of the centralized and decentralized
solutions without introducing any asymmetry on the financ-
ing of these two modes of operations.

Proposition 10 summarizes the optimal solution for the
central planner. The proof is almost identical to the proof
of Proposition 6 and is therefore omitted.

Proposition 10 (Central Planner’s Optimal Strat-
egy). The optimal production strategy, qH

C � � , is given by

qH
C � � =

(
Ā� − #H

C

2�

)+
� (19)

where #H
C is the minimum #� c� that solves

Ɛ�

[
c�

(
Ā� − #H

C

2�

)+]
� B�

The central planner’s optimal payoff given the information
available at time � is


H
C � � =

�Ā� + #H
C − 2c���Ā� − #H

C�
+

4�
� (20)

Once again, we interpret #H
C as a modified production

cost induced by the budget constraint.

4.3. Efficiency of the Centralized Solution

With this modified production cost structure in mind, one
would expect the centralized solution to be more efficient
than the decentralized solution in the sense that #H

C � #H.
This is not always the case, however, as the following
example demonstrates.

Example 2. Consider the following instance of the prob-
lem with B = 0�45, � = c� = 1, and Ā� uniformly dis-
tributed in �1�3�. Because

Ɛ�
0

[(
Ā2
� − c2

�

8�

)+]
= 5

12
<B and

Ɛ�
0

[
c�

(
Ā� − c�

2�

)]
= 1

2
>B�

it follows that c� = #H < #H
C. Furthermore, we can shown

that #H
C ≈ 1�103. Therefore, for values of Ā� in �1� #H

C�,
the central planner does not produce, i.e. qH

C � � = 0, while
the decentralized supply chain does operate, i.e. qH

� > 0.
Because

Ɛ�
0 �q

H
� �= Ɛ�

0

[
Ā� − c�

4�

]
= 1

4
and Ɛ�

0 �q
H
C � � �=

B

c�
= 0�45�

the central planner, on average, produces more than the
decentralized supply chain.



Caldentey and Haugh: Supply Contracts with Financial Hedging
Operations Research 57(1), pp. 47–65, © 2009 INFORMS 61

The previous example highlights an interesting feature
of the H-contract: contingent on the outcome �, the cen-
tralized supply chain can produce less than the decentral-
ized solution. This was never the case under the F-contract
(or S-contract). As was the case with the manufacturer
in the decentralized solution, the central planner uses the
financial market to adjust his budget constraint, shutting
down the operation (i.e., qH

C � � = 0) for some states � of
low demand and redistributing the cash that was originally
spent in those states to states � of high demand. Exam-
ple 2 (above) shows that in some cases, when #H <#H

C, the
central planner chooses to close the supply chain for more
states � than the manufacturer in a decentralized opera-
tion. On average, however, the central planner always pro-
duces more than the decentralized supply chain. To see this,
first note that if #H

C = c� , then (14) and (19) imply that
qH

C � � � qH
� , for all �. However, if #H

C > c� , then Proposi-
tion 10 implies that c�Ɛ

�
0 �q

H
C � � � = B. Then, Proposition 7,

together with Assumption 1, imply that

B� Ɛ�
0 �w

H
� q

H
� �= Ɛ�

0

[(
Ā� + #H

2

)(
Ā� − #H

4�

)+]
� c�Ɛ

�
0

[(
Ā� − #H

4�

)+]
= c�Ɛ

�
0 �q

H
� ��

implying, in particular, that Ɛ�
0 �q

H
C � � � � Ɛ�

0 �q
H
� �. In terms

of payoffs, it is clear that the central planner will always
prefer the H-contract to the F-contract because the ability
to hedge the budget constraint increases the set of feasible
ordering quantities.

We conclude this section by examining the efficiency
of the H-contract in terms of production levels, double
marginalization, and the competition penalty. Toward this
end, we define the following performance measures that are
conditional on the information available at time � :

�H
� �=

qH
�

qH
C � �

= �Ā� − #H�+

2�Ā� − #H
C�

+ � � H
� �= wH

�

c�
= Ā� + #H

2c�
� and

�H
� �= 1− Ɛ�

0 �

H
P � � �+ Ɛ�

0 �

H
R � � �

Ɛ�
0 �


H
C � � �

= 1− �3Ā� + #H − 4c���Ā� − #H�+

4�Ā� + #H
C − 2c���Ā� − #H

C�
+ �

It is interesting to note that, conditional on �� , the cen-
tralized supply chain is not necessarily more efficient than
the decentralized operation. For example, we know that in
some cases #H < #H

C (as in Example 2 above), so for all
those � with #H < Ā� < #H

C, qH
C � � = 0 and qH

� > 0, the com-
petition penalty is arbitrarily negative. This never occurs
under the F-contract. If #H � #H

C, however, then it is easy
to see that the centralized solution is always more efficient
than the decentralized supply chain, so �H

� � 1 and �H
� � 0.

We also note that if the budget is large enough so that
both the decentralized and centralized operations can hedge
away the budget constraint, then #H = #H

C = c� and

�H
� = 1/2 and �H

� = 1/4�

5. Conclusions and Further Research
In this paper, we have studied the performance of a stylized
supply chain where two firms, a retailer and a producer,
compete in a Stackelberg game. The retailer purchases a
single product from the manufacturer and then sells it in the
retail market at a stochastic clearance price. The retailer,
however, is budget constrained and is therefore limited in
the number of units that he may purchase from the pro-
ducer. We consider three types of contracts that govern the
operation of the supply chain. In the case of the simple
and flexible contracts, the retailer does not have access to
the financial markets. In the case of the flexible contract
with hedging, however, the retailer does have access to the
financial markets, so he can, at least in part, mitigate the
effects of the budget constraint. For each contract, we com-
pare the decentralized competitive solution with the solu-
tion obtained by a central planner. We also compare the
supply chain’s performance across the different contracts.

Our model and results extend the existing literature on
supply chain contracts by considering a budget-constrained
retailer and by including financial markets as (i) a source
of public information upon which procurement contracts
can be written, and (ii) a means for financial hedging to
mitigate the effects of the budget constraint.

We find that, in general, the more cash-constrained the
retailer is, the higher the wholesale price charged by
the producer. We also find that the producer always prefers
the flexible contract with hedging to the flexible con-
tract without hedging. Depending on the model parameters,
however, the retailer might or might not prefer the flexible
contract with hedging. One of our main results corresponds
to Case 1 in Proposition 6. There we establish that if the
budget is large enough, in an average sense, the ability to
trade in the financial market allows the retailer to com-
pletely remove the budget constraint. This is not possible
without financial trading unless the initial budget is so large
that, regardless of the demand forecast Ā� , the budget con-
straint is never binding.

Another interesting feature of the solution of the
H-contract is that when the forecasted demand is low (i.e.,
Ā� is small), the producer chooses to shut down the supply
chain by overcharging the retailer. By doing this, the pro-
ducer can induce the retailer to transfer its limited budget
from low-demand states to more profitable high-demand
states. This is possible only if the retailer has access to
the financial market to hedge the budget constraint. Under
the F-contract, when access to the financial markets is not
available, the producer never chooses to shut down the sup-
ply chain operations.

There are many directions in which this research could
be extended. Caldentey and Haugh (2006b) consider the
problem of choosing the optimal timing, � , of the contract,
and formulate this problem as an optimal stopping problem.
They also extend the model of this paper to applications
that incorporate foreign exchange risk, interest rate risk,
and credit risk, among others.
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There are many other directions future research could
follow. First, it would be interesting to consider mod-
els where the nonfinancial noise evolved as an observ-
able stochastic process. In this case, it would no longer be
necessary for the trading gain, G� , to be �� -measurable.
Indeed, the trading strategy would now depend on the evo-
lution of both the financial and nonfinancial noise. Solving
for the optimal trading strategy is then an incomplete-
markets problem and would require mathematical tech-
niques that are still being developed in the mathematical
finance literature. Applying these techniques to our compet-
itive Stackelberg-equilibrium setting where a budget con-
straint induces the desire to hedge would be particularly
interesting and challenging.

A related direction for future research is to build and
solve models where the need for hedging is induced by
the presence of risk-averse agent(s) rather than the pres-
ence of a budget constraint. Caldentey and Haugh (2005,
2006a) consider such problems in a noncompetitive setting,
where risk aversion is modeled by imposing explicit risk-
management constraints or by assuming that the agent is
risk averse with a quadratic utility function.

Third, it would be interesting to explore principal-agent
problems in the setting where the risk-averse (or budget-
constrained) agent has access to financial markets and the
principal has imperfect information regarding the actions
taken by the agent. Because the agent could use the finan-
cial market to smooth his income, it would presumably cost
the principal agent less to ensure that the agent behaved
optimally. This problem is, of course, related to the litera-
ture regarding executive compensation in corporate finance.
In this literature, it is often the case that the agent or execu-
tive is not permitted to trade in his company’s stock. How-
ever, there is no reason why the agent should not be free
to trade in other financial markets that impact his com-
pany’s performance. There are clearly many variations on
this problem that could be explored.

A fourth direction would be to consider other types of
contracts that the producer could offer to the retailer. In
this paper, we have considered only linear price contracts,
but other contracts could also be used. They include, for
example, quantity discount, buy-back, and quantity flexi-
bility contracts (e.g., Pasternack 1985 and Lovejoy 1999).
A contract that might be of particular interest in our hedg-
ing framework is an affine contract, where the producer
offers a contract of the form (w�� v� ) to the retailer. In
response, the retailer (assuming he accepts the contract)
orders the random quantity, q� , and pays the producer
q�w� − v� , where v� is an �� -measurable random variable.
If the retailer cannot trade, then this contract is very sim-
ilar to our H-contract, where v� might be interpreted as
a trading gain that is chosen by the producer. Obviously,
this would result in an equilibrium that would differ from
the equilibrium of the H-contract, where it is the retailer
who chooses the trading gain. If the retailer did have access
to the financial market, however, then this affine contract

could be replaced by a contract of the form (w��V ), where
V is now a constant transfer payment. This follows because
the retailer could use the financial markets to capitalize the
random gain, v� , obtaining instead V �= Ɛ�

0 �v� �.
A particularly important direction for future research is

to calibrate these models and operations financial market
models more generally. This is not an easy task, but it will
be necessary to do so if any of these models (competitive or
noncompetitive) are to be implemented in practice. Accu-
rate calibration would also enable us to determine what
types of financial risks are worth hedging and what the
resulting economic savings would be.

Appendix. Proofs of Propositions
Proof of Proposition 2. When B � BF

� for all � ∈ �,
the inequalities follow from Jensen’s inequality, the con-
cavity of the function f �x�= x+√x2 − 8�B, and the con-
vexity of the functions g�x�= x−√x2 − 8�B and h�x�=
�x−√x2 − 8�B�2 in the region x� 8�B.

Let us now look at the retailer’s payoff ratio when B ↓ 0:

lim
B↓0


F
R


S
R

= lim
B↓0

Ɛ�

[(
Ā� −

√
Ā2
� − 8�B

Ā−
√
Ā2 − 8�B

)2]

= Ɛ�

[
lim
B↓0

(
Ā� −

√
Ā2
� − 8�B

Ā−
√
Ā2 − 8�B

)2]
= Ɛ�

[
Ā

Ā�

]
�

The second equality follows from the bounded convergence
theorem and the third equality uses L’Hôpital’s rule. A sim-
ilar approach can be used to compute the limiting value of
the producer’s payoff ratio.

For the case B � BF
� for all � ∈�, the equalities for wF

�

and qF
� are straightforward. To verify the inequalities for

the producer and retailer’s payoff, note that

Ɛ���Ā� − c�2�= �Ā− c0�
2 + Ɛ��Ā2

� �−A2 + 2Āc0

− 2Ɛ��Ā� �c+ c2 − c2
0

= �Ā−c0�
2+Var�Ā��−2Ā�c−c0�+c2−c2

0 �

Therefore,


F
M �
S

M ⇐⇒ Ɛ�

[
�Ā� − c�2

8�

]
�

�Ā− c0�
2

8�

⇐⇒ Var�Ā��+ c2 − c2
0 � 2Ā�c− c0��

The proof for the retailer’s payoff is similar. �

Proof of Proposition 7. We prove a slightly more gen-
eral result in which � is a stopping time. The result in
Proposition 7 is a special case for a deterministic time � .

Consider an arbitrary �t-stopping time � � T and the
producer’s optimization problem


H
M = max

w� �'�0
Ɛ�

[
�w� − c��

(
Ā� −w��1+'�

2�

)+]
subject to Ɛ�

[
w�

(
Ā� −w��1+'�

2�

)+]
� B�
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To solve this problem, we first relax the budget constraint
using a multiplier (� 0. After relaxing the constraint, the
new objective function becomes

��w��'�(� �= Ɛ�

[
�w��1−(�−c��

(
Ā� −w��1+'�

2�

)+]
�

and it is clear that the optimal value of ( will satisfy (� 1.
In particular, we can restrict ( ∈ �0�1�. We introduce the
following change of variables:

y� �=w��1+'� and ) �= 1+'

1−(
�

Note that )� 1+' because ( ∈ �0�1� and '� 0. We can
now rewrite the objective function as

��y��)�=
1
)
Ɛ�

[
�y� − c�)�

(
Ā� − y�

2�

)+]
�

Let us fix ) and optimize ��y��)� over y� . That is, we
maximize ��y�� #� pointwise for each y� . If Ā� � c�),
then y� = �Ā� + c)�/2 is optimal. If Ā� � c�), then any
y� � Ā� is optimal. In particular, we can again take y� =
�Ā� + c�)�/2 as the optimal solution. The corresponding
optimal ordering quantity is given by

q� =
(
Ā� − c�)

4�

)+
�

Now it remains only to find the optimal values of ) and '.
Given the previous solution, the producer’s problem might
be formulated as

max
'�0�)�1+'

Ɛ�

[(
Ā2
� − �c�)�

2

8��1+'�

)+
− c�

(
Ā� − c�)

4�

)+]
subject to Ɛ�

[(
Ā2
� − c2

�)
2

8��1+'�

)+]
� B�

We can solve this problem as follows. Suppose that the
optimal ' is strictly greater than zero. Then, the constraint
must be binding because the objective function increases
as ' decreases. But the first term in the objective function
then equals B. Now note that it is possible to increase the
objective function by increasing ) and maintain the tight-
ness of the constraint by simultaneously reducing '. (It is
possible to do this because by assumption '> 0.) Clearly,
then we can continue increasing the objective function until
'= 0. In particular, we can conclude that the optimal value
of ' is zero. The optimization problem may be now for-
mulated as

max
)�1

Ɛ�

[(
Ā� − c�)

4�

)+(
Ā� + c�#

2
− c�

)]
subject to Ɛ�

[(
Ā2
� − c2

�)
2

8�

)+]
� B�

By inspection, it is clear that the optimal solution, )∗, satis-
fies )∗ =max�1� �)�, where �) is the value of ) that makes
the constraint binding.

The statement of Proposition 7 is complete once we iden-
tify #H with c�)

∗. �

Proof of Proposition 8. Suppose first that #H = c� .
Under the F-contract, the manufacturer’s expected payoff
can be written as

Ɛ��
F
M �X�=

1
8�

Ɛ���Ā� + #F
� − 2c���Ā� − #F

� �
+�� where

#F
� =max

{
c��

√
�Ā2

� − 8�B�+
}
�

For #H = c� , it is a matter of simple calculations to show
that

1
8�

Ɛ���Ā� + #F
� − 2c���Ā� − #F

� �
+�

�
1
8�

Ɛ���Ā� + #H − 2c���Ā� − #H�+�= Ɛ��
H
M �X��

so the manufacturer’s payoff is better under the H-contract
than under the F-contract.

Suppose now that #H > c� , and let us consider the fol-
lowing optimization problem:

max
#X

1
8�

Ɛ���Ā� + #X − 2c���Ā� − #X�
+� (21)

subject to
1
8�

Ɛ���Ā2
� − #2

X�
+�� B� (22)

#X � c� for all X ∈� � (23)

Note that �#F
� � X ∈�� is a feasible solution for this prob-

lem. Hence, to complete the proof of the proposition it is
enough to show that #∗

X = #H for all X ∈ � is an optimal
solution to (21)–(23). To prove this, first note that because
#H > c� , constraint (22) must be bidding at optimality. This
follows from the fact that �Ā� + #X − 2c���Ā� − #X�

+ is
decreasing in #X in the range #X ∈ �c�� Ā� �. Therefore, a
solution to (21)–(23) also solves

min
#X

Ɛ���Ā� − #X�
+� (24)

subject to
1
8�

Ɛ���Ā2
� − #2

X�
+�= B� (25)

#X � c� for all X ∈� � (26)

To solve this problem, we relax constraint (25). The corre-
sponding Lagrangian function is

��#�'�� Ɛ���X�#X�'��� where

�X�#X�'�� �Ā� − #X�
+�1+'�Ā� + #X���

If '� 0, then #X � Ā� for all X minimizes ��#�'�. How-
ever, this solution does not satisfy constraint (25). Hence,
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we must have '< 0. In this case, the problem of minimiz-
ing ��#�'� is solved with #X =−1/2' for all X, that is,
a constant value. To pick this fix value of #X , we need to
impose constraints (25) and (26). By the definition of #H,
we conclude that #X = #H for all X. �

Proof of Proposition 9. Let �Al�Au� and fA be the sup-
port and density of Ā� , respectively. Note that by assump-
tion Al > c� , and there is an 3 > 0 such that fA�z� > 3 for
all z ∈ �Al�Au�.

For B sufficiently small, #F
� =

√
Ā2
� − 8�B = Ā� −

4�B/Ā� +O�B2�. Therefore, as B ↓ 0, the retailer’s payoff
satisfies

Ɛ��
F
R �X�=

1
16�

Ɛ�

[(
4�B

Ā�

+O�B2�

)2]
= �B2Ɛ�

[
1

Ā2
�

]
+O

(
B3
)
�

For the case of the H-contract, for B sufficiently small
#H > c� , and solves∫ Au

#H

(
z2 − �#H�2

8�

)
fA�z�dz= B�

According to the mean-value theorem, there is an Ã ∈
�#H�Au� such that

fA�Ã�
∫ Au

#H

(
z2 − �#H�2

8�

)
dz= B�

After integrating and some straightforward manipulations,
we get

�Au − #H�2 = 24�B

�Au + 2#H�fA�Ã�
� (27)

The retailer’s payoff under the H-contract satisfies

Ɛ��
H
R �X�=

1
16�

∫ Au

#H
�z− #H�2fA�z�dz

= fA� �A�
16�

∫ Au

#H
�z− #H�2 dz= fA� �A��Au − #H�3

48�

for some �A ∈ �#H�Au�. Hence, we can combine this identity
and condition (27) to get

Ɛ��
H
R �X�=

fA� �A�
48�

(
24�

�Au + 2#H�fA�Ã�

)3/2

B3/2 �KB3/2�

where the constant K satisfies

K =
√

2�
9A3

u

min
{

fA� �A�
fA�Ã�

3/2
� Ã� �A ∈ �Al�Au�

}
> 0�

The inequality follows from the fact that fA is bounded
away from zero. �
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