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Abstract. We consider the problem of pricing options on a leveraged ETF (LETF) and the underlying ETF
in a model-consistent manner. We show that if the underlying ETF has Heston dynamics, then
the LETF also has Heston dynamics so that options on both the ETF and the LETF can be
priced analytically using standard transform methods. If the underlying ETF has tractable jump-
diffusion dynamics, then the dynamics of the corresponding LETF are generally intractable in that
we cannot compute a closed-form expression for the characteristic function of the log-LETF price.
In that event we either (i) evaluate the appropriate transform numerically or (ii) propose tractable
approximations based on either moment-matching techniques or saddlepoint approximations to the
LETF price dynamics under which the transform can be found in closed form. In a series of numerical
experiments including both low- and high-volatility regimes, we show that the resulting LETF option
price approximations are very close to the true prices which we calculate via Monte Carlo. Because
approximate LETF option prices can be computed very quickly, our methodology should be useful
in practice for pricing and risk-managing portfolios that contain options on both ETFs and related
LETFs. Our numerical results also demonstrate the model dependency of LETF option prices, and
this is particularly noticeable in high-volatility environments.

Key words. options, transforms, leveraged ETF

AMS subject classifications. 91G20, 91G60

DOI. 10.1137/151003933

1. Introduction. According to industry sources, as of April 2015 there were more than
5,500 registered ETFs globally with assets under management (AUM) of approximately $3 tril-
lion. These ETFs are spread among many asset classes, including equity, fixed income, com-
modity, and foreign exchange. There were liquid options available on approximately 500 of
these ETFs in 2013, and these ETFs accounted for approximately $1.9 trillion of the $3 tril-
lion in AUM. Moreover the total ETF options volume is very large indeed: according to the
Chicago Board Options Exchange [9], of the 4.1 billion exchange traded options contracts in
2013, 1.45 billion were ETF options, with equity options and cash index options accounting
for 2.27 billion and 0.39 billion, respectively. In contrast, there were approximately 2 billion
contracts traded in 2006, with a split of 1.5 billion equity options, 350 million ETF options,
and 180 million cash index options. Between 2006 and 2010 the ETF options market therefore
grew by a factor of four and is now a very large market indeed.

An even more recent development has been the introduction of leveraged ETFs (LETFs).
An LETF is an exchange-traded derivative security based on a single underlying ETF or
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560 ANDREW AHN, MARTIN HAUGH, AND ASHISH JAIN

index. It is intended to achieve a daily return of φ times the daily return of the underlying
ETF, and the LETF manager needs to rebalance his portfolio on a daily basis in order to
achieve this. The constant φ is known as the leverage ratio of the LETF. As of 2010, there
were approximately 150 LETFs with a total of $30 billion in AUM, and approximately 100
of these LETFs have liquid options traded on them. Moreover, a given LETF typically has
a very large and liquid ETF or index as its underlying security with options traded on both
the LETF and the underlying ETF.

Upon their introduction, there was considerable confusion among investors over the per-
formance of LETFs, particularly during the financial crisis when volatility levels spiked to
unprecedented levels. In particular, many investors did not appreciate that LETFs had a
negative exposure to the realized variance of the underlying ETF and therefore did not an-
ticipate their potentially poor performance during this period. Cheng and Madhavan [7] and
Avellaneda and Zhang [2] were the first to model and explain this LETF performance. In
a continuous-time diffusion framework they obtained an expression (see (2.2) below) that
highlighted this negative exposure to realized variance. Based on results by Haugh and Jain
in [14], Haugh [13] also derived this expression as a simple case of a more general expression
for the realized wealth that results from following a constant proportion trading strategy in a
multisecurity diffusion setting.

While these papers helped to explain LETF performance, there has been little work on
the pricing of LETF options and, in particular, on pricing them in a manner that is consistent
with the pricing of options on the underlying ETF. One approach for pricing LETF options is
based on using the Black–Scholes formula with the implied volatility taken from a related ETF
option and then scaled by the leverage ratio. But this approach is ad hoc and has not been
properly justified. Concurrent with our work is the recent paper of Leung and Sircar [16], who
use asymptotic techniques in a multiscale stochastic volatility diffusion setting to understand
the link between implied volatilities of the underlying ETF and related LETFs of a given
leverage ratio. They then use the resulting insights to identify possible mispricings in the
marketplace.

In this paper we price LETF options quickly and consistently with options on the under-
lying ETF under three different models: (i) Heston’s [15] stochastic volatility model, (ii) the
Bates [4] jump-diffusion model, and (iii) an affine jump-diffusion (AJD) model of Duffie, Pan,
and Singleton [8], which includes jumps in both the volatility and price processes. In what
follows, we will often refer to these models as the SV, SVJ, and SVCJ models, respectively.
It should also be clear that the approximation techniques we develop in this paper can be
applied more generally and that our treatments of the SV, SVJ, and SVCJ models may be
viewed as applications of a more general approach. For example, other AJD models of Duffie
et al. [8] should also be amenable to our approximation techniques. We do not propose a
“one size fits all” approximation, however, so some additional work will generally be required
to obtain a suitable approximation for a new set of underlying ETF price dynamics.

We show that if the underlying ETF has Heston dynamics, then the LETF also has Heston
dynamics, so that options on both the ETF and the LETF can be priced analytically using
standard transform methods. If the underlying ETF has tractable jump-diffusion dynamics (as
in (ii) and (iii) above), then the dynamics of the corresponding LETF are generally intractable
in that we cannot compute a closed-form expression for the characteristic function of the log-D
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CONSISTENT PRICING OF OPTIONS ON LEVERAGED ETFs 561

LETF price. Instead we can either compute this characteristic function numerically (as in (ii)
above), or else (as in (iii) above) we construct tractable approximations to the LETF dynamics
where the characteristic function of the log-LETF price can be found in closed form. Such
approximations enables us to calculate approximate option prices very quickly. The key to
this latter approach is that under our jump-diffusion models for the underlying ETF, the
diffusion component of the LETF dynamics remains “tractable.” We therefore only need to
focus on approximating the jump component of the LETF dynamics.

The approximations that we propose include1 classic moment-matching techniques and the
saddlepoint approximation approach of Glasserman and Kim [10] for handling less tractable
AJD processes. In a series of numerical experiments including both low- and high-volatility
regimes, we show that the resulting LETF option price approximations are very close to the
true prices which we calculate via Monte Carlo. Our approximate LETF option prices can
be computed quickly and therefore should be useful in practice for pricing and risk-managing
portfolios that contain options on both ETFs and related LETFs.

Our numerical experiments also show that the ratio of an LETF option implied volatility
to the corresponding ETF option implied volatility can be far from the LETF leverage ratio.
The difference between the two depends on whether or not the LETF is long or short and is
model dependent, thereby emphasizing the path dependence of the LETF price at any given
time. In order to illustrate just how model dependent the prices of LETF options can be, we
also price these options under the Barndorff-Nielsen and Shephard [3] model in addition to the
three models listed above. This model dependency calls into question the market practice of
pricing an LETF option using the Black–Scholes formula with the strike and implied volatility
scaled by the leverage ratio.

Finally, it is worth emphasizing that our use of the word “consistent” in the title of this
paper refers to model or internal consistency. In particular, rather than using separate models
for pricing ETF options and LETF options, our goal is to show how to consistently price these
options at the model level only. We therefore do not claim that any one model can always
price these options consistently with market prices. Indeed given the behavior of financial
markets, we expect that the only models capable of always fitting to market prices are those
models which have too many parameters and therefore tend to overfit. Moreover, given the
need to frequently recalibrate even parsimonious models throughout the derivatives markets,
we suspect that such models may never be found. Regardless, model-consistent pricing is a
necessary step before one can tackle the problem of market-consistent pricing. Moreover, if
the goal is to identify mispriced LETF options in the market, then model consistency rather
than market consistency is clearly the appropriate approach.

The remainder of this paper is organized as follows. Section 2 describes our modeling
assumptions for LETF price dynamics. In sections 3, 4, and 5 we consider the SV, SVJ,
and SVCJ models, respectively, for the underlying ETF and describe how LETF options can

1Earlier versions of this paper proposed an approach where the entire distribution of the jump component
of the LETF price dynamics was approximated by a more tractable distribution. While the resulting approx-
imations were very accurate, the approach was very ad hoc and somewhat awkward to describe. We have
therefore replaced it with approaches based on moment-matching and saddlepoint approximations. While both
of these new approaches also require some work to implement, they are less ad hoc, easier to describe, and, as
standard approximation techniques, easy to justify.D
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562 ANDREW AHN, MARTIN HAUGH, AND ASHISH JAIN

be calculated for each of these models. Section 6 describes how we calibrated these mod-
els, and section 7 provides numerical results confirming the quality of our moment-matching
approximation for the SVCJ model. We describe the saddlepoint approximation approach
in section 8, and we conclude in section 9. The appendices contain further details on our
approximation methods as well as some additional numerical results.

2. Modeling leveraged ETF dynamics. We let St and Lt denote the time t prices of the
underlying ETF and LETF, respectively. Rather than working in discrete time we will work
instead in continuous time and assume that the LETF is rebalanced continuously.

Modeling leveraged ETF dynamics when the underlying has diffusion dynamics. If St

follows a diffusion, then the mechanics of the LETF implies that Lt has dynamics

(2.1)
dLt

Lt
= φ · dSt

St
+ (1− φ)rdt− fdt,

where r is the continuously compounded risk-free interest rate and f is the constant expense
ratio of the LETF. There is no difficulty incorporating dividends as long as we interpret the
dSt term in (2.1) to include any dividend payments. The (1− φ)rdt term in (2.1) reflects the
cost of funding the leveraged position when φ > 1, or the risk-free income from an inverse
ETF when φ < 0.

Assuming general diffusion dynamics of the form dSt = μtSt dt + σtSt dWt, Avellaneda
and Zhang [2] solved2 (2.1) to obtain

(2.2)
LT

L0
=

(
ST

S0

)φ

exp

(
(1− φ)rT − fT +

1

2
φ(1− φ)

∫ T

0
σ2
t dt

)
.

They used this expression to explain the empirical performance of LETFs during the financial
crisis. Note that for leverage ratios satisfying |φ| > 1 it is clear from (2.2) that a long LETF
position is short realized variance for a given value of ST . Haugh and Jain [14] also derived a
more general form of (2.2) in a dynamic portfolio optimization context. It is also easy to show
that this negative exposure to variance could be interpreted as a (multiplicative) premium
that must be paid for obtaining a payoff of (ST /S0)

φ rather than the payoff you would obtain
from a buy-and-hold portfolio with initial leverage of φ.

Modeling leveraged ETF dynamics when the underlying can jump. Note also that if
St can jump, then (2.1) will still be valid as long as we truncate the jumps appropriately to
reflect the limited liability of the LETF. But of course the LETF manager must implicitly
pay for the truncation of these jumps, since otherwise an arbitrage opportunity would exist.
When the underlying price process can jump, we therefore assume dynamics for Lt of the form

(2.3)
dLt

Lt−
= φ · dS

∗
t

St−
+ (1− φ)rdt− fdt− ctdt,

where dS∗
t denotes the possibly truncated increment in the underlying price at time t, and

ctdt is the “insurance premium” paid at time t to insure against Lt violating limited liability

2Cheng and Madhavan [7] obtained (2.2) under geometric Brownian motion dynamics.D
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in the next dt units of time. Note that we can also write (2.3) more explicitly as

(2.4)
dLt

Lt−
= φ · dSt

St−
+ (1− φ)rdt− fdt− ctdt for 0 ≤ t < τ,

where τ is the first-passage time of the event φdSt/St− ≤ −1. Moreover we assume Lt ≡ 0
for all t ≥ τ .

2.1. Risk-neutral dynamics for the leveraged ETF. While not stated explicitly, the dy-
namics in (2.1) to (2.4) are assumed to hold under P , the objective or true data-generating
probability measure. Because these are pathwise dynamics they must therefore hold under
any equivalent martingale measure, Q. In this paper we will take Q to be the martingale
measure associated with taking the cash account as numeraire. We will also assume that
the risk-free rate, r, is a constant3 but note that it would be straightforward to relax this
assumption if necessary. Note that once we specify Q-dynamics for St we are also implicitly
specifying Q-dynamics for Lt via (2.3) and (2.4).

All of our examples in this paper will assume that the underlying security price has risk-
neutral dynamics of the form

dSt

St−
= (r − q − λm)dt+

√
VtdW

S
t + dJt,(2.5)

where q is the dividend yield, λ is the intensity of the jump process, Jt, and Vt is some
stochastic volatility process. We will write Jt :=

∑Nt
i=1(Yi − 1) so that Yi − 1 represents the

relative jump size in the security price at the time of the ith jump. In particular, if the ith
jump occurs at time τi, then Sτi = Sτi−Yi. We set m = E

Q(Yi− 1), which guarantees that the
discounted gains process associated with holding the underlying security is a Q-martingale.

Some simple algebra confirms that jumps, Yi, in the underlying security that satisfy φ(Yi−
1) < −1 would cause Lt to go negative in the absence of limited liability. In the presence of
limited liability we must therefore use a jump process for Lt of the form JL

t :=
∑Nt

i=1(Y
L
i −1),

where
Y L
i := max (φ(Yi − 1), −1) + 1.

Continuing our insurance analogy, we could imagine the leveraged ETFmanager being exposed
to all jumps, φ(Yi − 1), but in such a way that he is insured against any jumps that would
cause Lt to go negative. We can calculate the premium per unit time, ct, as the (risk-neutral)
expected loss per unit time that the insurer would incur due to a possible jump in Lt to a
negative value. The risk-neutral value of this insurance4 is then given by

ct := λp∗
(
E
Q[−1− φ(Yi − 1) |φ(Yi − 1) < −1]

)
= −λp∗

(
E
Q[φ(Yi − 1) |φ(Yi − 1) < −1] + 1

)
,(2.6)

where p∗ := Q(φ(Yi − 1) < −1), so that λp∗ is the arrival rate for jumps that will drive Lt to
zero. The “+1” term on the right-hand side of (2.6) is required because the insurance only

3Given the short expirations that are typical for LETF options, the assumption of constant interest rates
is easy to justify.

4Because λ is a constant in our examples, ct is in fact a constant. We could, however, also use our approach
for more general point processes such as affine processes, which are also tractable.D
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covers that part of the jump beyond −1, and indeed the jump event itself will drive the LETF
price, Lt, to 0. Substituting (2.6) and (2.5) into (2.4) and also taking the insurance payoff,
dJ ins

t say, into account, we obtain the following risk-neutral dynamics for Lt:

dLt

Lt−
= φ

(
(r − q − λm)dt+

√
VtdW

S
t + dJt

)
+ (1− φ)rdt− fdt− ctdt+ dJ ins

t(2.7)

= (r − φq − f − λφm)dt+ φ
√

VtdW
S
t + dJL

t − ctdt

= (r − φq − f − λmL)dt+ φ
√

VtdW
S
t + dJL

t ,(2.8)

where we have used the fact that φdJt + dJ ins
t = dJL

t and used (2.6) and m = E
Q(Yi − 1) to

obtain

mL := φm+ ct/λ

= (1− p∗) · EQ[φ(Yi − 1)|φ(Yi − 1) > −1]− p∗.(2.9)

Note that these dynamics are only valid for 0 ≤ t ≤ τ and that (2.7) does not contradict (2.4)
since the dJ ins

t term (which is absent in (2.4)) is only nonzero at time τ .
In the foregoing analysis we have implicitly assumed that dividends from the underlying

ETF (or index) will be multiplied by φ and then paid out, in the case where φ is positive, to
investors in the corresponding LETF. If φ is negative, then the LETF investor will have to pay
out these dividends. We make this assumption in order to simplify the exposition but note
that in practice the treatment of dividends can vary with each LETF. For example, inverse
LETFs with φ < 0 typically have a dividend yield of zero and do not require their investors
to make dividend payments, while positively leveraged ETFs typically pay a smaller dividend
than φq. Moreover, because leveraged ETFs often have other sources of income, e.g., interest
income from the proceeds of short sales, understanding dividend dynamics needs to be done
on a case-by-case basis. We do note that it is also possible to infer an implied LETF dividend
yield in the usual manner using put-call parity. For the purpose of this paper, however, we
will assume a dividend yield of φq + f as implied by (2.8) and simply note that it would be
straightforward to handle other dividend assumptions.

The path dependence of leveraged ETF prices. While clear from (2.2) in the case of
a diffusion, it is worth emphasizing that the risk-neutral dynamics of (2.8) yield a terminal
value of LT that is path dependent. In particular LT cannot be expressed as a function of
ST alone, and so pricing an option on LT does not amount to simply pricing some derivative
of ST . (Pricing a derivative of ST can be done in a model-independent fashion by using the
implied volatility surface of ST to compute the risk-neutral marginal distribution of ST .)

3. Heston’s stochastic volatility model. The first model that we consider is Heston’s [15]
stochastic volatility (SV) model, and we will see that it is particularly easy to price LETF
options under this model. We assume the underlying ETF price, St, has risk-neutral dynamics
given by

dSt

St
= (r − q)dt+

√
VtdW

S
t ,(3.1)

dVt = κ(θ − Vt)dt+ γ
√

VtdW
V
t ,(3.2)D
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where q is the dividend yield, and W S
t and W V

t are standard Brownian motions with constant
correlation parameter, ρ. Our first result is particularly straightforward and states that if St

has Heston dynamics, then so too does Lt.
Proposition 1. Suppose the underlying ETF price, St, has Heston dynamics given by (3.1)

and (3.2). Then assuming a leverage ratio of φ, the LETF price, Lt, has dynamics given by

dLt

Lt
= (r − qL)dt+ sign(φ) ·

√
V L
t dW S

t ,(3.3)

dV L
t = κL(θL − V L

t )dt+ γL

√
V L
t dW V

t ,(3.4)

where V L
t := φ2Vt, qL := φq+ f , κL := κ, γL := |φ|γ, and θL := φ2θ. In particular the LETF

also has Heston dynamics.
Proof. Since St follows a diffusion, we note that (2.1) and (2.3) are identical. If we therefore

substitute (3.1) into (2.3), we obtain dLt/Lt = (r − φq)dt + φ
√
VtdW

S
t , which immediately

yields (3.3). Similarly, using (3.2) we obtain dV L
t = φ2κ(θ−Vt)dt+φ2γ

√
VtdW

V
t , which yields

(3.4).
Proposition 1 shows that if St has Heston dynamics with parameter set (q, κ, γ, θ, V0, ρ),

then Lt has Heston dynamics with parameter set

(3.5) (qL, κL, γL, θL, V
L
0 , ρL) := (φq + f, κ, |φ|γ, φ2θ, φ2V0, sign(φ) · ρ).

Since it is easy to price options using transform methods under the Heston model, Proposi-
tion 1 implies that we can price options on ETFs and LETFs consistently with each other
when the ETF has Heston dynamics. While this result was very easy to derive, we have not
seen it elsewhere in the literature. In his Ph.D. thesis, for example, Zhang [18] considers the
pricing of LETF options when the underlying has Heston dynamics. He does not observe that
Lt also has Heston dynamics, however, probably because he worked with (2.2) rather than
(2.1). Indeed Zhang proposed a change of measure motivated by (2.2) and observed that Lt

had Heston dynamics with time-dependent parameters under this new measure. The time
dependency of the parameters under the new measure does not allow options on the LETF to
be calculated via transform methods, however.

One further remark is in order at this point. It should be clear that the tractability that
the LETF dynamics inherits from the underlying price dynamics will hold for diffusions in
general and not just the Heston model. This should be clear from (2.1).

4. The SVJ model. The Bates [4] stochastic volatility (SVJ) model is an extension of
the SV model that allows for the possibility of jumps in the security price process. The
risk-neutral dynamics for the SVJ model are

dSt

St−
= (r − q − λm)dt+

√
VtdW

S
t + dJt,(4.1)

dVt = κ(θ − Vt)dt+ γ
√

VtdW
V
t ,(4.2)

where W S
t and W V

t are standard Brownian motions with correlation coefficient ρ, Nt is a
Poisson process with intensity λ, and Jt :=

∑Nt
i=1(Yi− 1) so that Yi− 1 represents the relativeD
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jump size in the security price at the time of the ith jump. In particular, if the ith jump
occurs at time τi, then Sτi = Sτi−Yi. The Yi’s are assumed to be independent and identically

log-normally distributed with log Yi ∼ N(a, b2) with m := E(Yi − 1) = exp
(
a+ b2

2

)− 1.
Proposition 2. If St has risk-neutral dynamics given by (4.1) and (4.2), then the risk-

neutral dynamics of Lt satisfy

dLt

Lt−
= (r − qL − λmL)dt+ sign(φ)

√
V L
t dW S

t + dJL
t ,(4.3)

dV L
t = κL(θL − V L

t )dt+ γL

√
V L
t dW V

t ,(4.4)

where V L
t := φ2Vt, qL := φq + f , κL := κ, γL := |φ|γ, θL := φ2θ, and JL

t :=
∑Nt

i=1(Y
L
i − 1),

where

Y L
i := max (φ(Yi − 1), −1) + 1,

mL := (1− p∗) · EQ[φ(Yi − 1)|φ(Yi − 1) > −1]− p∗,

and p∗ := Q(φ(Yi − 1) < −1) =

⎧⎨
⎩
F
(
log
(
φ−1
φ

)
; a, b

)
if φ > 0,

1− F
(
log
(
φ−1
φ

)
; a, b

)
if φ < 0,

(4.5)

where F ( · ; a, b) is the cumulative distribution function of the N(a, b) distribution.
Proof. Equation (4.3) follows from (2.8). Since V L

t := φ2Vt it is also clear that (4.4)
follows directly from (4.2).

We would like to price options on the LETF using standard transform methods based on
calculating the characteristic function of the log-LETF price. But first we will distinguish
between two types of jumps. We say that a jump, Y , is of type I if it satisfies max(φ(Y −1)+
1, 0) = 0. Such a jump would drive Lt to zero. Otherwise, it is of type II. A jump is type I
with probability p∗ and type II with probability 1−p∗, where p∗ is defined in (4.5). Let N1(t)
and N2(t) denote, respectively, the number of type I and type II jumps occurring in [0, t]. By
the thinning property of Poisson processes, N(t) = N1(t) +N2(t), where N1(t) and N2(t) are
independent Poisson processes with rates λp∗ and λ(1 − p∗), respectively. We then have the
following proposition.

Proposition 3. Let C(L0,K, T ) be the time t = 0 price of a call option on the LETF with
strike K, maturity T, and initial LETF price L0. Then C(L0,K, T ) = exp(−λp∗T ) Ĉ(L0,K,
T ), where

(4.6) Ĉ(L0,K, T ) := E
Q
0 [e

−rT (LT −K)+|N1(T ) = 0]

is the value of the option given that there are no type I jumps in [0, T ].
Proof. The proof is immediate once we note that a type I jump will cause the LETF price

to immediately fall to zero so that the call option will expire worthless in that event.
We will compute LETF call option prices5 in the SVJ model by computing Ĉ(L0,K, T ) and

then using Proposition 3. We would like to compute Ĉ(L0,K, T ) using numerical transform

5Put prices can then be obtained from put-call parity.D
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CONSISTENT PRICING OF OPTIONS ON LEVERAGED ETFs 567

inversion methods6 applied to the characteristic function of the log-LETF price, Lt, conditional
on N1(T ) = 0. Since the diffusion component of the LETF dynamics is Heston (and therefore
easy to handle), the only difficulty is in computing the characteristic function of the jump
component of the log-LETF price conditional on N1(T ) = 0.

Toward this end, let ΦJL
2 (T ) denote the characteristic function of the jump component of

the log-LETF price conditional on N1(T ) = 0. Then a standard expression for the character-
istic function of a compound Poisson process yields

ΦJL
2 (T )(u) = E

Q
0

⎡
⎣exp

⎛
⎝iu ·

N(T )∑
j=1

log(Y L
j )

⎞
⎠∣∣∣∣ N1(T ) = 0

⎤
⎦

= E
Q
0

⎡
⎣exp

⎛
⎝iu ·

N2(T )∑
j=1

log(Y L
j )

⎞
⎠
⎤
⎦

= exp [λ(1− p∗)T (ΦX(u)− 1)] ,(4.7)

where ΦX(·) is the characteristic function of X with

(4.8) X := (log(φ(Y − 1) + 1) | φ(Y − 1) + 1 > 0) .

If we can calculate ΦX(·), then it is easy to see that the characteristic function of the
log-LETF price conditional on N1(T ) = 0 is given by
(4.9)
ΦN1≡0
L (u) := exp(−λmLiuT ) Φ

SV
T (u ; r, qL, κL, γL, θL, V

L
0 , ρL, L0)×exp [λ(1− p∗)T (ΦX(u)− 1)] .

We could then use (4.9) together with the Carr–Madan [6] approach to compute Ĉ(L0,K, T ) in
(4.6) and therefore obtain our LETF call option prices. We cannot compute ΦX(·) analytically,
however, and so we must compute it numerically. Since the density function of X is known,7

we can compute ΦX(u) for a given u via numerical integration. Our approach then is to pre-
calculate ΦX(u) on a fine grid u = u1, . . . , uN , and then for an arbitrary u we will approximate
ΦX(u) with ΦX(uj), where uj is the closest grid-point to u. Using a suitably fine grid, we can
obtain a very good approximation to ΦX(·) which in turn yields a very accurate approximation,
Φ̂N1≡0
L (·), that we can use in place of (4.9).

5. The SVCJ model. The stochastic volatility model (SVCJ) with contemporaneous
jumps in price and variance was introduced by Duffie, Pan, and Singleton [8]. The risk-
neutral dynamics for this model are

dSt

St−
= (r − q − λm)dt+

√
VtdW

S
t + dJS

t ,(5.1)

6We use the Carr–Madan [6] Fourier inversion approach throughout the paper.
7We can define X as X := [g(log(Yi)) | φ(Yi − 1) + 1 > 0], where g(x) := log(φ(ex − 1) + 1)). Letting

f(·; a, b) denote the density of log(Y ) ∼ N(a, b), we obtain

q(x) =
f(g−1(x);a, b)

P(φ(Yi − 1) + 1 > 0)
·
∣∣∣∣ d

dx
(g−1(x))

∣∣∣∣ =
sign(φ)

1− p∗
· f

(
log

(
ex + φ− 1

φ

)
; a, b

)
· ex

ex + φ− 1

as the density of X.D
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568 ANDREW AHN, MARTIN HAUGH, AND ASHISH JAIN

dVt = κ(θ − Vt)dt+ γ
√

VtdW
V
t + dJV

t ,(5.2)

where JS
t :=

∑Nt
i=1(Yi − 1), JV

t :=
∑Nt

i=1 Zi, and Nt is a Poisson process with intensity λ. As
before, Yi − 1 represents the percentage change in the security price due to the ith jump size
and Zi is the corresponding change in variance. In particular if the ith jumps occur at time
τi, then Sτi = Sτi−Yi and Vτi = Vτi− + Zi. We also assume the jumps in security price and
variance are correlated. More precisely, we assume the Zi’s are exponentially distributed with
mean μv and that, conditional on Zi, log(Yi) is normally distributed with mean a+ ρJZi and
variance b2. In other words,

(5.3) Zi ∼ Exp(μ−1
v )

and

(5.4) log(Yi) ∼ N(a, b2) + ρJZi ∼ N(a, b2) + sign(ρJ) · Exp(c),
where c := |ρJμv|−1 and the normal and exponential components in (5.4) are independent.
We also have Corr(Zi, log(Yi)) = sign(ρJ) · ((bc)2 + 1)−1/2, which approaches ±1 as b goes to
0, and we see that m = E(Yi− 1) = exp

(
a+ b2/2

)
c/(c− sign(ρJ))− 1. Finally note that W S

t

and W V
t are standard Brownian motions with constant correlation coefficient ρ. We have the

following proposition describing the risk-neutral dynamics of Lt in the SVCJ model.
Proposition 4. If St has risk-neutral dynamics given by (5.1) and (5.2), then the LETF

with leverage ratio φ has risk-neutral dynamics

dLt

Lt−
= (r − qL − λmL)dt+ sign(φ)

√
V L
t dW S

t + dJL
t ,(5.5)

dV L
t = κL(θL − V L

t )dt+ γL

√
V L
t dW V

t + d(φ2JV
t ),(5.6)

where V L
t := φ2Vt, qL := φq + f , κL := κ, γL := |φ|γ, θL := φ2θ, JL

t :=
∑Nt

i=1(Y
L
i − 1), and

Y L
i := max (φ(Yi − 1), −1) + 1,

p∗ := Q(φ(Yi − 1) < −1) =

⎧⎨
⎩
P
(
log(Yi) < log

(
φ−1
φ

))
if φ > 0,

P
(
log(Yi) > log

(
φ−1
φ

))
if φ < 0,

and mL := (1− p∗) · EQ[φ(Y − 1)|φ(Y − 1) > −1]− p∗.(5.7)

Proof. Equation (5.5) follows directly from (2.8), and since V L
t := φ2Vt, (5.6) follows

immediately from (5.2).
The question that now arises is whether or not we can price options on the LETF with

dynamics given by (5.5) and (5.6). We could try to use the approach we adopted for the SVJ
model where we precomputed ΦX(·) on a fine grid of points, but this does not seem like a
very promising approach for two reasons. First, X will be a bivariate random variable under
the SVCJ model (see (5.8) below), and so we would need to precompute ΦX(·) on a two-
dimensional grid. Second, and more importantly, under the SVCJ model the characteristic
function of the log-LETF price must be computed as the solution of a series of ODEs (seeD
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CONSISTENT PRICING OF OPTIONS ON LEVERAGED ETFs 569

Appendix B.3) which depend in part on ΦX(·). Because this characteristic function is then
used as an input to price LETF options via numerical transform inversion, it is desirable to
have an analytic expression for it. Unfortunately we do not have an analytic expression for
ΦX(·) under the SVCJ model.

We will therefore proceed by approximating the dynamics of the LETF with more tractable
dynamics. But first note that if we define type I and type II jumps as before, then Propo-
sition 3 remains valid under the SVCJ model so that (4.6) still holds, i.e., C(L0,K, T ) =
exp(−λp∗T ) Ĉ(L0,K, T ), where Ĉ(L0,K, T ) := E

Q
0 [e

−rT (LT − K)+|N1(T ) = 0] is the value
of the option given that there are no type I jumps in [0, T ]. Our goal will be to approximate
the option price by approximating Ĉ(L0,K, T ). To do this we let

X := (X1,X2)

:=
((
log(φ(Yi − 1) + 1), φ2Zi

) | φ(Yi − 1) + 1 > 0
)

=
((
log(Y L

i ), φ2Zi

) | φ(Yi − 1) + 1 > 0
)

(5.8)

be the bivariate random vector representing jumps in the log-LETF price and its variance
process, respectively. As stated above, we would like to have a closed-form expression for the
characteristic function ΦX(·) of X so that we could then apply the methodology of Duffie,
Pan, and Singleton [8] to compute the characteristic function of the log-LETF price.

We don’t have such a closed-form expression, however, so we will instead approximate X
with another bivariate distribution whose characteristic function is available in closed form.
In particular, we will approximate X with a combination of univariate normal and bivariate
exponential (BVE) distributions where the parameters of the approximating distribution will
be chosen via a simple moment-matching procedure. Moment matching is a standard ap-
proximation approach and has been employed successfully in many domains, including (see,
for example, Glasserman and Merener [12]) the pricing of financial derivatives. The specific
details of the moment-matching algorithm are provided in Appendix B.2. As with many ap-
proximation approaches, it is necessary to tailor the approach to the problem at hand. In this
case we have chosen the normal-BVE distribution to approximate X as defined for the SVCJ
model, as we have found8 it to be capable of providing a very good fit in this case. For other
AJD models the normal-BVE distribution may not be suitable, and so it would be necessary9

to use some other suitably tractable distribution.

6. Model calibration using synthetic data. We considered three different parameter sets
for our numerical experiments. The first set was obtained by calibrating each of the models
to 6-month call options on the underlying security in a low-volatility environment. The call
option strikes ranged from $60 to $140. The low-volatility regime was characterized by a
relatively flat skew and an at-the-money (ATM) volatility of approximately 20%. The second

8This observation is based on results from an earlier version of this paper where we fitted the normal-BVE
distribution using a more complex optimization procedure. In this version of the paper we are using a simple
moment-matching approach to fit the distribution. While the numerical results aren’t quite as good, moment
matching is easy to describe and a commonly employed approximation scheme.

9In section 8 we will propose the saddlepoint approximation approach of Glasserman and Kim [10] for
pricing LETF options under general AJD dynamics. Even then it is clear from [10] that it would be necessary
to tailor the details of the saddlepoint approximation to the specific model dynamics under consideration.D
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Parameter set I
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Parameter set II
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Figure 1. Volatility skews for the underlying ETF.

parameter set was obtained by calibrating the three models to 6-month call options on the
underlying security in a high-volatility environment with a steeper skew and an ATM volatility
of approximately 72%. This high-volatility environment was typical of the environment that
prevailed at the height of the financial crisis of 2008. The third parameter set was obtained
by calibrating each of the models to 1-month call option prices in the same high-volatility
environment that we used for the second parameter set. These environments are reflected
by the volatility skews,10 displayed as blue curves in Figure 1, where we also assumed the
underlying price S0 was $100. To be clear, the three environments were not obtained from
any real market data and therefore constitute an artificially created data-set. Nonetheless it
is clear from Figure 1 that these environments are representative of what might be seen in
practice.

In each of our models we assumed r = 0.01 and q = f = 0. With the exception of ρ, the
remaining model parameters in each model were calibrated by minimizing the sum-of-squares

10We did not have a formal mathematical rule for creating these skews but instead used simple rules of
thumb that applied in the marketplace at that time. For example, the implied volatility of a 20-delta option
might be 4 to 6 points higher than the implied volatility of the corresponding ATM option.D
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CONSISTENT PRICING OF OPTIONS ON LEVERAGED ETFs 571

between the Black–Scholes implied volatilities in the given environment and the Black–Scholes
volatilities implied by the model. The parameter ρ was fixed in advance as is commonly the
case when calibrating Heston-style models. The reason for this is that it is well known that
the sum-of-squares objective function tends to have so-called valleys or directions along which
the objective function changes very little. This tends to create a problem for optimization
routines, and for this reason it is common to fix ρ in advance to some sensible value.

The Heston model: We set ρ = −0.76. The remaining parameters, (κ, γ, V0 = θ), were
obtained by minimizing the sum-of-squares as described above.

The SVJ model: We set ρ = −0.76 and then solved for the remaining six parameters,
(κ, γ, V0 = θ, λ,m, b).

The SVCJ model: We set ρ = −0.82 and then solved for the remaining eight parameters,
(κ, γ, V0 = θ, λ,m, b, μv, ρJ ).

The value of ρ for the SV and SVJ models was taken from Broadie and Jain [5], while the
value for the SVCJ model was taken from Duffie, Pan, and Singleton [8]. Table 1 displays the
calibrated parameters for each of the models in the three environments, and Figure 1 shows
that all three models were calibrated successfully to the given implied volatilities11 in each
of the three environments. (The SV model doesn’t calibrate quite as well, but this is to be
expected given that it has fewer parameters than the SVJ and SVCJ models.)

It is worth mentioning that we calibrated these models only to the prices of options written
on the underlying index. An alternative and equally valid (though more difficult) approach
would be to try and calibrate simultaneously to index and LETF option prices. We chose the
former approach for several reasons. First, options on the underlying ETF are more liquid
than the corresponding LETF option prices, and so it made sense to focus our calibration
effort on these prices. Second, one of the questions we are interested in addressing in this
paper is how LETF option prices varied across models. It was much easier to approach this
problem by calibrating all models to index option prices only. If the goal is to treat options on
the underlying index and LETF equally, then it may be preferable to calibrate to both option
types. This would certainly be possible, but given the difficulty of pricing LETF options it
would be considerably more time-consuming.

7. Numerical results. In this section we compute LETF option prices by applying the
Carr–Madan transform approach to the characteristic function of the log-LETF price (or
approximate log-LETF price in the case of the SVCJ model). We will compare these approx-
imate prices with the assumed exact prices obtained via Monte Carlo. The advantage of the
transform approach is that it is much faster than Monte Carlo simulation and allows for the
consistent price calculation and risk management of ETF and LETF options in almost real
time.

The Monte Carlo prices were obtained using the scheme of Andersen [1], which was de-
signed to simulate the Heston model accurately. In the case of the SVJ and SVCJ models,
we simply adapted Andersen to account for the independent jump processes. We assumed
a time increment of Δ = 0.001 which, assuming 250 trading days per year, corresponds to
an interval of a quarter-day. Within the Monte Carlo simulation we assumed the LETF was

11The implied volatilities are computed from the synthetic skews that we defined to model the various
environments. These skews are displayed as blue curves in Figure 1.D
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572 ANDREW AHN, MARTIN HAUGH, AND ASHISH JAIN

Table 1
Model parameters.

Parameter set I (calibrated to 6-month option prices in the low-volatility environment).

Parameters SV model SVJ model SVCJ model

Risk free rate r 0.01 0.01 0.01
Speed of mean reversion κ 10.95 0.5012 0.6097
Volatility of variance γ 0.2528 0.0895 0.0776

Long run mean variance θ 0.0421 0.0353 0.0393
Initial variance V0 0.0421 0.0353 0.0393

Correlation ρ −0.7571 −0.7571 −0.82
Jump arrival rate λ n/a 1.0808 0.1406

m n/a −0.01 −0.0128
b n/a 0.0745 0.1152
μv n/a n/a 0.01
ρJ n/a n/a 0.0013

Parameter set II (calibrated to 6-month option prices in the high volatility environment).

Parameters SV model SVJ model SVCJ model

Risk free rate r 0.01 0.01 0.01
Speed of mean reversion κ 4.9498 0.6500 0.6500
Volatility of variance γ 1.1478 0.7895 0.3377

Long run mean variance θ 0.5505 0.3969 0.4048
Initial variance V0 0.5505 0.3969 0.4048

Correlation ρ −0.7571 −0.7571 −0.82
Jump arrival rate λ n/a 2.1895 0.4996

m n/a −0.0105 −0.2592
b n/a 0.2719 0.4588
μv n/a n/a 0.094
ρJ n/a n/a −0.2713

Parameter set III (calibrated to 1-month option prices in the high volatility environment).

Parameters SV model SVJ model SVCJ model

Risk free rate r 0.01 0.01 0.01
Speed of mean reversion κ 10.95 0.3632 0.5474
Volatility of variance γ 1.5086 0.6113 0.5730

Long run mean variance θ 0.5295 0.4156 0.4521
Initial variance V0 0.5295 0.4156 0.4521

Correlation ρ −0.7571 −0.7571 −0.82
Jump arrival rate λ n/a 1.7483 0.5623

m n/a −0.1286 −0.2635
b n/a 0.2384 0.3148
μv n/a n/a 0.0371
ρJ n/a n/a 0.01

rebalanced every 4 periods, which is equivalent to the daily rebalancing that is performed in
practice. Our first task is to compute option prices on the underlying ETF using Carr and
Madan’s transform approach and Andersen’s Monte Carlo scheme. Note that options on the
underlying can be priced exactly using the transform approach as the characteristic functionD
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Table 2
Option prices on underlying index/ETF for parameter set II computed via Monte Carlo and transform

inversion approaches. Approximate 95% confidence intervals are reported in brackets.

Moneyness BS vol (%) BS price Option price (SV) Option price (SVJ) Option price (SVCJ)

K
S0

ΣBS CBS Csim Ctran Csim Ctran Csim Ctran

0.75 75.44 33.66 33.66 33.66 33.66 33.66 33.65 33.65
[33.65, 33.66] - [33.65, 33.67] - [33.65, 33.66]

1 71.08 20.04 20.10 20.10 20.05 20.05 20.06 20.05
[20.09, 20.11] - [20.04, 20.06] - [20.05, 20.06] -

1.25 68.03 11.24 11.23 11.23 11.23 11.22 11.25 11.24
[11.23, 11.24] - [11.22, 11.23] - [11.24, 11.25] -

Table 3
Option prices on underlying index/ETF for parameter set III computed via Monte Carlo and transform

inversion approaches. Approximate 95% confidence intervals are reported in brackets.

Moneyness BS vol(%) BS price Option price (SV) Option price (SVJ) Option price (SVCJ)

K
S0

ΣBS CBS Csim Ctran Csim Ctran Csim Ctran

0.9 74.42 13.98 14.01 14.01 13.98 13.98 13.97 13.98
[14.01, 14.01] - [13.98, 13.99] - [13.97, 13.98]

1 71.08 8.04 8.10 8.10 8.05 8.04 8.05 8.05
[8.10, 8.10] - [8.04, 8.05] - [8.04, 8.05] -

1.1 68.54 4.09 4.10 4.10 4.09 4.09 4.10 4.10
[4.10, 4.11] - [4.09, 4.09] - [4.09, 4.10] -

of the log-ETF price is available in this case for all three models. The reason we compute
option prices on the underlying ETF is simply to check that the two sets of prices agree mod-
ulo statistical error from the simulation and numerical inversion error from the Carr–Madan
scheme.

Tables 2 and 3 display these ETF option prices for our three models under parameter
sets II and III, respectively. (All of our results for parameter set I, which corresponds to the
low-volatility 6-month environment, are deferred to Appendix C.) The Monte Carlo results
were based on simulating 108 sample paths, which took12 several hours to run. We required
this many paths to get sufficiently narrow confidence intervals so as to allow a comparison of
the Monte Carlo prices with the transform prices. It is clear from Tables 2 and 3 that both
methods produce ETF option prices that effectively coincide with one another. Given this
agreement we are now in a position to consider how well our pricing of LETF options actually
performs, particularly13 in the case of the SVJ and SVCJ models.

In Tables 4 and 5 we display prices of LETF options for parameter sets II and III, respec-
tively, for each of our three models and various leverage ratios. (Recall that obtaining the

12All of our numerical experiments were implemented in MATLAB version 7.12.0 (R2011a) on a Windows 7
machine with a 2.53 GHz processor and 4GB of RAM.

13Recall that we needed to precompute numerically the characteristic function of the truncated jump com-
ponent of the log-LETF price for the SVJ model, and that we needed to approximate its distribution for the
SVCJ model.D
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Table 4
Comparing leveraged ETFs option prices with approximate prices in parameter set II. Approximate 95%

confidence intervals are reported in brackets.

Leverage ratio Moneyness Option price (SV) Option price (SVJ) Option price (SVCJ)

φ KS
S0

KL
L0

Csim Ctran Csim Ctran Csim Ctran

2 0.75 0.5 60.74 60.66 61.51 61.44 61.66 61.61
[60.72, 60.76] - [61.49, 61.53] - [61.64, 61.68] -

1 1 37.87 37.78 38.43 38.37 38.50 38.48
[37.86, 37.89] - [38.41, 38.45] - [38.48, 38.51] -

1.25 1.5 24.18 24.11 24.45 24.41 24.66 24.70
[24.16, 24.19] - [24.43, 24.46] - [24.65, 24.68] -

3 0.75 0.25 81.98 81.82 83.25 83.06 82.39 82.27
[81.94, 82.01] - [83.21, 83.29] - [82.35, 82.43] -

1 1 53.09 52.77 54.07 53.87 52.93 52.81
[53.05, 53.12] - [54.03, 54.11] - [52.90, 52.97] -

1.25 1.75 37.60 37.30 37.84 37.69 37.33 37.29
[37.57, 37.63] - [37.80, 37.87] - [37.30, 37.36] -

−1 0.75 1.25 14.15 14.14 13.93 13.90 12.63 13.03
[14.14, 14.16] - [13.92, 13.94] - [12.62, 12.64] -

1 1 21.19 21.15 21.16 21.10 20.00 20.36
[21.18, 21.20] - [21.15, 21.17] - [19.99, 20.01] -

1.25 0.75 32.79 32.73 33.24 33.16 32.25 32.51
[32.78, 32.80] - [33.23, 33.25] - [32.24, 32.26] -

−2 0.75 1.5 32.09 31.88 31.29 31.01 27.94 27.94
[32.05, 32.14] - [31.24, 31.33] - [27.91, 27.97] -

1 1 41.95 41.68 41.60 41.26 38.81 38.75
[41.90, 41.99] - [41.56, 41.64] - [38.78, 38.84] -

1.25 0.5 60.25 60.02 61.09 60.76 59.08 59.01
[60.21, 60.30] - [61.04, 61.13] - [59.05, 59.11] -

−3 0.75 1.75 51.48 50.72 49.43 48.46 44.41 43.96
[51.19, 51.77] - [49.18, 49.69] - [44.31, 44.51] -

1 1 60.88 60.17 59.56 58.59 55.77 55.30
[60.59, 61.18] - [59.31, 59.82] - [55.67, 55.87] -

1.25 0.25 81.74 81.46 82.59 81.89 80.65 80.44
[81.45, 82.04] - [82.33, 82.85] - [80.55, 80.76] -

Monte Carlo prices took several hours, so the discussion here refers only to the prices Ctran

obtained via numerical transform inversion.) The most computationally demanding task was
pricing the LETF options under the SVJ model: for each parameter set and each leverage
ratio, it took about one minute to obtain the three option prices. Almost all of this time was
spent computing the characteristic function of the log-truncated jump distribution on a grid
of 10,000 points. Given the accuracy of the prices we obtained, we could easily have improved
the run-time of these calculations by using a coarser grid of points. Moreover, we could have
used instead the moment-matching approach that we adopted for the SVCJ model. While
not quite as accurate, this latter approach only took approximately one-tenth of a second
to perform the moment matching for a given leverage ratio and then price the three options
corresponding to that ratio. Pricing the LETF options for the SV model took even less timeD
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Table 5
Comparing leveraged ETFs option prices with approximate prices in parameter set III. Approximate 95%

confidence intervals are reported in brackets.

Leverage ratio Moneyness Option price (SV) Option price (SVJ) Option price (SVCJ)

φ KS
S0

KL
L0

Csim Ctran Csim Ctran Csim Ctran

2 0.9 0.8 27.10 27.03 27.32 27.28 27.18 27.13
[27.10, 27.11] - [27.32, 27.33] - [27.17, 27.19] -

1 1 15.98 15.94 16.06 16.04 15.97 15.94
[15.98, 15.99] - [16.05, 16.06] - [15.96, 15.97] -

1.1 1.2 8.66 8.66 8.75 8.76 8.71 8.72
[8.66, 8.67] - [8.74, 8.75] - [8.70, 8.71] -

3 0.9 0.7 39.31 39.09 39.70 39.56 39.22 39.08
[39.30, 39.32] - [39.69, 39.71] - [39.21, 39.23] -

1 1 23.65 23.49 23.78 23.70 23.45 23.38
[23.65, 23.66] - [23.77, 23.79] - [23.44, 23.46] -

1.1 1.3 13.64 13.58 13.74 13.76 13.56 13.59
[13.63, 13.65] - [13.74, 13.75] - [13.56, 13.57] -

−1 0.9 1.1 4.81 4.84 4.54 4.55 4.57 4.51
[4.81, 4.81] - [4.53, 4.54] - [4.57, 4.58] -

1 1 8.25 8.24 8.02 8.00 8.05 7.97
[8.25, 8.25] - [8.02, 8.02] - [8.05, 8.06] -

1.1 0.9 13.58 13.53 13.48 13.44 13.50 13.40
[13.57, 13.58] - [13.48, 13.49] - [13.49, 13.50] -

−2 0.9 1.2 10.39 10.41 9.61 9.61 9.72 9.75
[10.39, 10.40] - [9.60, 9.61] - [9.72, 9.73] -

1 1 16.58 16.49 15.96 15.86 16.06 15.98
[16.58, 16.59] - [15.95, 15.97] - [16.05, 16.06] -

1.1 0.8 26.49 26.32 26.24 26.07 26.26 26.11
[26.48, 26.50] - [26.23, 26.25] - [26.26, 26.27] -

−3 0.9 1.3 16.72 16.61 15.19 15.11 15.44 15.33
[16.71, 16.73] - [15.18, 15.20] - [15.43, 15.45] -

1 1 25.02 24.70 23.81 23.54 24.02 23.72
[25.00, 25.03] - [23.80, 23.82] - [24.01, 24.03] -

1.1 0.7 38.74 38.31 38.23 37.87 38.31 37.91
[38.73, 38.76] - [38.22, 38.25] - [38.30, 38.32] -

as no approximations were required.
Figures 2 and 3 display an alternative view of the results in Tables 4 and 5, respectively.

Each figure consists of five subplots, one for each value of the leverage ratio, φ. These subplots
show the percentage relative pricing error for each of the three models. We take the daily
rebalanced Monte Carlo price as the “true” price and the transform-inversion price as the
“approximate” price.

Before analyzing the results, we first consider the possible sources of discrepancy between
the reported Monte Carlo prices and the prices obtained via numerical transform inversion.
There are four such sources:

(i) Our Monte Carlo assumed that the leveraged ETFs were rebalanced at a daily fre-
quency as is the case in practice. The transform approach, however, implicitly assumesD
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Figure 2. Percentage relative error, (Csim−Ctran)
Ctran

× 100, of approximate LETF option prices for parameter
set II.
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Figure 3. Percentage relative error, (Csim−Ctran)
Ctran

× 100, of approximate LETF option prices for parameter
set III.
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that the rebalancing takes place continuously. We will see in Table 6 below that this
is a principal source of the discrepancy between the Monte Carlo prices and the ap-
proximate prices.

(ii) Numerical transform inversion is also a source of error, but we believe this error to be
very small and on the order of at most 1 or 2 cents. This claim is justified in part by
the results in Tables 2 and 3.

(iii) Statistical error in the reported Monte Carlo prices. We ensured this error was small by
simulating sufficiently many paths so as to ensure that the approximate 95% confidence
intervals were just 1 or 2 cents wide.

(iv) The fourth source are the errors that arise from (i) the numerical precomputation of
the characteristic function of the truncated jump component of the log-LETF price in
the case of the SVJ model, and (ii) our approximation of the jump size distribution
in the case of the SVCJ model.

The main observation from Tables 4 and 5 (and Figures 2 and 3) is that the approximate
LETF option prices as reported in the Ctran columns are very close to the reported Monte
Carlo prices. The most noticeable discrepancy occurs for some options with leverage ratios of
−3 in Table 4, where the discrepancy between the simulation and transform-based prices is
sometimes on the order of 1% or 2%. But in a high-volatility environment these errors should
easily fall within the bid-ask spreads found in practice. We note that the errors are much
smaller for the 3-month high-volatility environment options of Table 5 and are practically
nonexistent for the low-volatility environment of Table 15 corresponding to parameter set 1.

We also note that the Monte Carlo prices are generally higher than the transform-based
prices. This is presumably due to the fact that prices computed via the transform approach are
based on continuous rebalancing of the LETFs, whereas the Monte Carlo prices are computed
assuming the LETF is rebalanced daily. This is also suggested by the prices in the SV model
where LETF option pricing is exact (modulo transform inversion error) but where we still see a
discrepancy between Monte Carlo and transform prices that is comparable to the discrepancies
we observe in the SVJ and SVCJ models.

We can confirm this observation by examining the option prices in Table 6, where we also
report Monte Carlo prices that were estimated assuming the LETF was rebalanced 4 times
per day rather than just once per day. In that table we see that the Monte Carlo prices based
on rebalancing four times per day are generally much closer to the transform-based prices.
Presumably if we were to increase the LETF rebalancing frequency, then the Monte Carlo
and transform-based prices would be in even closer agreement. These observations justify our
earlier observation that most of the discrepancy in Tables 4 and 5 between the Monte Carlo
prices and transform-based prices is due to the differences in rebalancing frequency.

Another observation regarding Table 6 is that, with the exception of the SVCJ model,
LETF option prices appear to be monotonic with respect to rebalancing frequency for a given

leverage ratio and moneyness value. In particular, we see that C
(1)
sim ≥ C

(4)
sim ≥ Ctran is

generally satisfied for the SV and SVJ models. (Recall our earlier observation that Ctran

corresponds to a continuous rebalancing assumption.) In the case of the SVCJ model we do

observe that C
(1)
sim ≥ C

(4)
sim but the pattern is broken with Ctran. This is likely due to the fact

that Ctran is computed using approximate LETF dynamics, whereas the Monte Carlo prices
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Table 6
Comparison of LETF option prices obtained by Monte Carlo simulation with different rebalancing frequen-

cies in parameter set II. C
(1)
sim corresponds to daily rebalancing, and C

(4)
sim corresponds to rebalancing 4 times

per day. Ctran refers to prices that were obtained via numerical transform inversion.

Leverage ratio Moneyness Option price (SV) Option price (SVJ) Option price (SVCJ)

φ KS
S0

KL
L0

C
(1)
sim C

(4)
sim Ctran C

(1)
sim C

(4)
sim Ctran C

(1)
sim C

(4)
sim Ctran

2 0.75 0.5 60.74 60.69 60.66 61.51 61.46 61.44 61.66 61.61 61.61
1 1 37.87 37.81 37.78 38.43 38.39 38.37 38.50 38.46 38.48

1.25 1.5 24.18 24.13 24.11 24.45 24.42 24.41 24.66 24.65 24.70
3 0.75 0.25 81.98 81.88 81.82 83.25 83.12 83.06 82.39 82.28 82.27

1 1 53.09 52.87 52.77 54.07 53.92 53.87 52.93 52.80 52.81
1.25 1.75 37.60 37.39 37.30 37.84 37.73 37.69 37.33 37.24 37.29

−1 0.75 1.25 14.15 14.14 14.14 13.93 13.90 13.90 12.63 12.62 13.03
1 1 21.19 21.16 21.15 21.16 21.12 21.10 20.00 19.97 20.36

1.25 0.75 32.79 32.74 32.73 33.24 33.18 33.16 32.25 32.21 32.51
−2 0.75 1.5 32.09 31.93 31.88 31.29 31.06 31.01 27.94 27.81 27.94

1 1 41.95 41.74 41.68 41.60 41.33 41.26 38.81 38.65 38.75
1.25 0.5 60.25 60.08 60.02 61.09 60.83 60.76 59.08 58.95 59.01

−3 0.75 1.75 51.48 50.80 50.72 49.43 48.59 48.46 44.41 43.99 43.96
1 1 60.88 60.24 60.17 59.56 58.72 58.59 55.77 55.36 55.30

1.25 0.25 81.74 81.43 81.46 82.59 81.96 81.89 80.65 80.48 80.44

are computed using the true LETF dynamics.
A final observation from Tables 4 and 5 is that there is some discrepancy in LETF option

prices across the three different models. For example, in Table 4 we see that with φ = −3
and KL/L0 = 1.75 the LETF call option price is approximately $51, $49, and $44 under the
SV, SVJ, and SVCJ models, respectively. This is despite the fact that all three models were
calibrated to the same 6-month implied volatilities. Of course, this observation is not too
surprising as the LETF price is path dependent, and so it is not the case that the 6-month
LETF option prices will only depend on the risk-neutral distribution of St where t = 6 months.
This difference in LETF option prices across models is less noticeable in the 1-month options
of parameter set III in Table 5. It is also worth pointing out that the 6-month LETF option
prices vary very little by model in the low-volatility environment of parameter set I. These
prices are displayed in Appendix C. We will return to this issue in section 7.1.

7.1. Comparing the LETF implied volatilities across different models. We now report
the LETF option prices in terms of their Black-Scholes implied volatilities. We have already
seen that there is some variability in these prices across the different models, but it would
be interesting to see this variability expressed in units of implied volatility. This will also
allow us to consider the commonly used practice of computing an LETF option price via the
Black–Scholes formula with the implied volatility taken (and scaled appropriately) from a
corresponding underlying index (or ETF) option price. We will also introduce an additional
model, namely, the Barndorff-Nielsen and Shephard (BNS) model (see [3]), as this model helps
to provide an even clearer demonstration of the fact that LETF option prices are strongly path
dependent and are not uniquely determined by the implied volatility surface of the underlyingD
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index or ETF. In particular, we will see that introducing the BNS model into our set of model
will broaden (and sometimes dramatically) the range of plausible LETF option prices. We
first describe the BNS model.

The BNS model. The variance process is modeled by an Ornstein–Uhlenbeck (OU) pro-
cess driven by a Levy process with nonnegative increments. In particular we will assume
that the variance process is a gamma-OU process and that the risk-neutral dynamics for the
security price and instantaneous variance are

d log St =

(
r − q − aλρ

b− ρ
− Vt

2

)
dt+

√
VtdWt + ρdzλ·t,

dVt = −λVtdt+ dzλ·t,

where Wt is a standard Brownian motion and zt is a compound Poisson process with zt =∑Nt
n=1 xn, where the Poisson process Nt has intensity a and the xi’s are independent and

identically distributed exponential random variables with mean 1/b. We also assume λ > 0
and V0 > 0 so that (since dzλ·t is always nonnegative) inf0≤t≤T Vt ≥ exp(−λT ) > 0. The
parameter ρ is typically negative to account for the negative correlation between variance
and the underlying price process. Note that the variance can only jump upward and that
between jumps it decays exponentially. With a negative value of ρ the security price will
jump downward when a jump in variance occurs, and it is worth noting in this case that
leveraged ETFs with φ < 0 can then only jump upward in price. There is therefore no need to
truncate the jumps of the LETF price process in this case, and indeed the LETF price process
will itself have BNS dynamics. When φ > 0 this will not be true as it will be necessary to
truncate the jumps of the underlying ETF. In this case we could try to approximate the jump
process as we did with the SVJ and SVCJ models and then obtain approximate LETF option
prices using transform methods. Rather than doing this, however, we will simply price the
LETF options using Monte Carlo because our goal in this section is to simply investigate how
model dependent LETF option prices are.

We calibrated the BNS model to the same implied volatility skews of Figure 1 and note
here that this calibration was performed successfully so that all four models agreed on the
prices of options on the underlying ETF. This agreement can be seen in Tables 10 and 11 in
Appendix A by noting that the columns labeled ΣS are practically identical across the four
models. The prices of the LETF options across the four models and various leverage ratios are
displayed in Table 7. The same results, except in terms of implied volatilities, are displayed
in Tables 10 and 11 (and Figures 4 and 5) for parameter sets II and III, respectively. The
LETF option implied volatilities are displayed in the columns labeled ΣL and are calculated
using the LETF option prices from Tables 4 and 5.

In order to compute the implied volatility ratios, ΣL
ΣS

, we aligned14 the options on the
underlying ETF and the leveraged ETF on a “strike-equivalent basis” to account for the
leverage. For example, we align a 25% out-of-the-money option on the underlying ETF with

14We also note that Leung and Sircar [16] proposed an alternative approach for aligning or comparing
options on the underlying with options on the LETF. Their approach is to compute the implied volatility of
the LETF options and then divide them by the (absolute) value of the leverage ratio. This approach seems
more appropriate for their goal, namely, studying how the underlying skew influences the LETF skew.D
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Table 7
Comparison for the prices of options on the leveraged ETFs obtained by Monte Carlo simulation in pa-

rameter sets II and III.

Leverage ratio Moneyness Parameter set II Moneyness Parameter set III

φ KS
S0

KL
L0

CSV
sim CSV J

sim CSV CJ
sim CBNS

sim
KS
S0

KL
L0

CSV
sim CSV J

sim CSVCJ
sim CBNS

sim

2 0.75 0.5 60.74 61.51 61.66 63.20 0.9 0.8 27.10 27.32 27.18 27.50
1 1 37.87 38.43 38.50 40.55 1 1 15.98 16.06 15.97 16.26

1.25 1.5 24.18 24.45 24.66 26.64 1.1 1.2 8.66 8.75 8.71 8.93
3 0.75 0.25 81.98 83.25 82.39 85.18 0.9 0.7 39.31 39.70 39.22 40.50

1 1 53.09 54.07 52.93 57.81 1 1 23.65 23.78 23.45 24.62
1.25 1.75 37.60 37.84 37.33 42.29 1.1 1.3 13.64 13.74 13.56 14.47

−1 0.75 1.25 14.15 13.93 12.63 11.53 0.9 1.1 4.81 4.54 4.57 4.39
1 1 21.19 21.16 20.00 18.92 1 1 8.25 8.02 8.05 7.86

1.25 0.75 32.79 33.24 33.25 31.48 1.1 0.9 13.58 13.48 13.50 13.35
−2 0.75 1.5 32.09 31.29 27.94 24.88 0.9 1.2 10.39 9.61 9.72 9.18

1 1 41.95 41.60 38.81 36.15 1 1 16.58 15.96 16.06 15.50
1.25 0.5 60.25 61.09 59.08 57.72 1.1 0.8 26.49 26.24 26.26 25.88

−3 0.75 1.75 51.48 49.43 44.41 39.00 0.9 1.3 16.72 15.19 15.44 14.36
1 1 60.88 59.56 55.77 51.48 1 1 25.02 23.81 24.02 22.97

1.25 0.25 81.74 82.59 80.65 79.48 1.1 0.7 38.74 38.23 38.31 37.64

a 50% out-of-the-money option on a double-long LETF to account for the higher leverage of
φ = 2. We note that the implied volatility ratio tends to be close to the leverage ratio, φ, but
that there can be a considerable discrepancy between the two. The degree of this discrepancy
is model dependent and is very notable for the BNS model (which is why we have included
the BNS model here). For a given model, it is also the case that whether or not the ratio ΣL

ΣS

is greater than φ depends on whether or not the LETF is positively or negatively leveraged.
We emphasize again here that these observations are based on parameter set II, which models
the 6-month, high-volatility environment.

8. Saddlepoint approximations. The affine jump-diffusion (AJD) models of Duffie, Pan,
and Singleton [8] are a rich and flexible class under which the prices of many derivative security
types can be obtained via the numerical inversion of extended transforms. In general, however,
these extended transforms can only be computed numerically as the solution of a series of
ODEs. In order to compute derivative security prices it is therefore necessary (in general) to
solve a series of ODEs for each integration point in the aforementioned numerical transform
inversion. This has limited application of AJD models in practice to the much smaller subset
of models for which the transforms are available in closed form. We note that even though
the SVJ and SVCJ models considered in this paper are AJD models where the transforms are
known in closed form, this is not true for the LETF dynamics in those models: truncating
the jumps results in AJD models where the transforms are not available in closed form.

Glasserman and Kim [11] proposed the use of saddlepoint approximations to tackle this
issue. More specifically, it is well known that the calculation of option prices can be reduced to
the calculation of tail probabilities of the form Q(Y > y), where Y = log(ST ), the log-security
price at time T , and Q is an equivalent martingale measure corresponding to some givenD
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numeraire. In the AJD setting this tail probability can be calculated via Fourier inversion
according to

(8.1) Q(Y > y) =
1

2πi

∫ τ+i∞

τ−i∞
e(K(z)−zy) dz

z
, τ > 0,

where K is the cumulant-generating function (CGF) of the log-security price, i.e., eK (z) =
E(ez log(ST )). We can therefore price options by performing a numerical integration to compute
the right-hand side of (8.1). Unfortunately, for each evaluation point z in the numerical
integration, we must in general solve a series of ODEs to compute K(z). As mentioned above,
this seriously limits the applicability of AJD models to those models where K(z) is available
in closed form.

Glasserman and Kim’s contribution was to recognize that if K(z) is not available in closed
form, then it would still be possible to obtain an accurate approximation to (8.1) using a
saddlepoint approximation. Their approximation requires the calculation of K(ẑ) as well
as the first and second derivatives, K′

(ẑ) and K′′
(ẑ), at the saddlepoint, ẑ. The saddlepoint

satisfies K′
(ẑ) = y, and most of the computational work is expended in solving15 this equation.

(Calculation of K(ẑ), K′
(ẑ), and K′′

(ẑ) requires solving three systems of ODEs. This is a
significant improvement over having to solve a system of ODEs for each integration point
z.) In their numerical experiments, Glasserman and Kim obtain accurate option prices via
their saddlepoint approximations, but they also find that no one approach dominates. While
their LR approximation provides the best overall performance, they recommend16 tailoring
the specific approximation to the level of moneyness and time-to-maturity.

In order to examine the performance of the saddlepoint technique for pricing LETF op-
tions, we applied17 it to the SV model under the high-volatility parameter sets II and III.
In Tables 8 and 9 we compare the LETF option prices that were obtained using three differ-
ent methods: Monte Carlo, numerical transform inversion, and saddlepoint approximation.
(Recall that when the underlying index/ETF has SV dynamics, then the LETF also has SV
dynamics, and therefore numerical transform inversion yields exact option prices (assuming
continuous rebalancing of the LETF).) We see that the transform inversion and saddlepoint
prices practically coincide: the price difference is a cent or less in every case. This admittedly
limited experiment suggests that the saddlepoint approach is also capable of producing accu-
rate LETF option prices for other AJD price dynamics. Given the observations of Glasserman
and Kim, however, it’s unlikely that the saddlepoint approach can be used in a black-box fash-
ion for all AJD models. In particular, some tailoring of the approach to each model under
consideration would be required.

9. Conclusions. We have shown how to obtain accurate LETF option prices via transform
pricing methods for the Heston (SV) model as well as two related jump-diffusion models,
namely, the SVJ and SVCJ models. Our option prices for the SV and SVJ models were

15Glasserman and Kim consider several approaches for finding ẑ, including the Lieberman approximation,
the Lugannani–Rice (LR) formula, and variations of the LR formula.

16In a similar spirit, we would recommend tailoring jump distribution of the moment-matching approach to
the specific AJD model under consideration.

17We are grateful to Kyoung-Kuk Kim for providing us with MATLAB code that we could easily adapt to
pricing the LETF options in the SV model.D
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Table 8
Comparing LETF option prices in the SV model under parameter set II. Csaddlepoint refers to prices that

were obtained via a saddlepoint approximation.

Leverage ratio Moneyness Option price

φ KS
S0

KL
L0

Csim Ctran Csaddlepoint

2 0.75 0.5 60.74 60.66 60.66
1 1 37.87 37.78 37.78

1.25 1.5 24.18 24.11 24.10
3 0.75 0.25 81.98 81.82 81.82

1 1 53.09 52.77 52.76
1.25 1.75 37.60 37.30 37.29

−1 0.75 1.25 14.15 14.14 14.14
1 1 21.19 21.15 21.15

1.25 0.75 32.79 32.73 32.72
−2 0.75 1.5 32.09 31.88 31.88

1 1 41.95 41.68 41.67
1.25 0.5 60.25 60.02 60.01

−3 0.75 1.75 51.48 50.72 50.72
1 1 60.88 60.17 60.17

1.25 0.25 81.74 81.46 81.46

Table 9
Comparing LETF option prices in the SV model under parameter set III. Csaddlepoint refers to prices that

were obtained via a saddlepoint approximation.

Leverage ratio Moneyness Option price

φ KS
S0

KL
L0

Csim Ctran Csaddlepoint

2 0.9 0.8 27.10 27.03 27.03
1 1 15.98 15.94 15.94
1.1 1.2 8.66 8.66 8.66

3 0.9 0.7 39.31 39.09 39.09
1 1 23.65 23.49 23.49
1.1 1.3 13.64 13.58 13.59

−1 0.9 1.1 4.81 4.84 4.84
1 1 8.25 8.24 8.24
1.1 0.9 13.58 13.53 13.53

−2 0.9 1.2 10.39 10.41 10.41
1 1 16.58 16.49 16.49
1.1 0.8 26.49 26.32 26.32

−3 0.9 1.3 16.72 16.61 16.61
1 1 25.02 24.70 24.70
1.1 0.7 38.74 38.31 38.31

exact, but in the case of the SVCJ model we proposed approximate price dynamics for the
LETF based on approximating its (truncated) jump distribution. We find our methodology
works very well in both low- and high-volatility environments, and because they are consistentD
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with the prices of options on the underlying ETF, they permit consistent pricing and risk-
management of derivatives portfolios containing both ETF and LETF options. It should
also be clear that similar approximation techniques could be applied to other jump-diffusion
models, and so our examples should be viewed as applications of a more general approximation
technique. We have also proposed the saddlepoint approximation approach of Glasserman and
Kim [10] as an alternative approach which can be used for general affine jump-diffusion price
dynamics. Nevertheless, we note that these approximation methods do need to be tailored to
the specific model under consideration.

In addition to confirming the accuracy of our LETF option prices, our numerical experi-
ments also showed that the ratio of an LETF option implied volatility to the corresponding
ETF option implied volatility can be far from the LETF leverage ratio. This, of course, can
also be seen from market prices of options on ETFs and corresponding LETFs. The difference
between the two depends on whether or not the LETF is long or short and is model dependent,
thereby emphasizing the path dependence of the LETF price at any given time. This calls
into question the market practice of pricing an LETF option using the Black–Scholes formula
with the strike and implied volatility from the underlying ETF scaled by the leverage ratio.
In particular, it should be clear that using the Black–Scholes formula in this manner amounts
to the implicit assumption of (generally unspecified) dynamics for the underlying ETF.

Appendix A. Log-price characteristic functions.

The Heston model. The characteristic function of the log-security price under the Heston
model is (see [19], for example) given by

ΦSV
T (u; r, q, κ, γ, θ, V0, ρ, S0) = exp [iu(log(S0) + (r − q)T )]

× exp
[
θκγ−2 ((κ− ργui− d)T − 2 log((1− g exp(−dT ))/(1 − g)))

]
(A.1)

× exp
[
V0γ

−2(κ− ργui− d) (1− exp(−dT )) / (1− g exp(−dT ))
]
,

where d :=
√

(ργui− κ)2 + γ2(iu+ u2) and g := (κ− ργui− d)/(κ − ργui+ d).

The Bates model. The characteristic function of the log-security price under the SVJ
model is

ΦSV J
T (u; r, q, κ, γ, θ, V0, ρ, S0, λ, a, b) = ΦSV

T (u ; r, q, κ, γ, θ, V0, ρ, S0)× exp(−λmiuT )

× exp

[
λT

(
exp

(
aiu− b2u2

2

)
− 1

)]
,(A.2)

where m := exp
(
a+ b2

2

)− 1.

The BNS model. The characteristic function of the log-security price under the BNS
model is

ΦBNS
T (u; r, q, a, b, V0, λ, ρ, S0) = exp

[
iu
(
log(S0) + (r − q − aλρ(b− ρ)−1)T

)]
× exp

[−λ−1(u2 + ui)(1− exp(−λT ))V0/2
]

(A.3)

× exp

[
a(b− f2)

−1

(
b log

( b− f1
b− uiρ

)
+ f2λT

)]
,
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Figure 4. Ratio of the Black–Scholes implied volatilities for the underlying and leveraged ETF options
(rescaled by strike), ΣL

ΣS
, for parameter set II.

0.75 1 1.25

1.5

2

2.5

 

 
SV
SVJ
SVCJ
BNS

(a) φ = 2

0.75 1 1.25

2.5

3

3.5

(b) φ = 3

0.75 1 1.25

0.5

1

1.5

(c) φ = −1

0.75 1 1.25

1.5

2

2.5

(d) φ = −2

0.75 1 1.25

2.5

3

3.5

(e) φ = −3

Figure 5. Ratio of the Black–Scholes implied volatilities for the underlying and leveraged ETF options
(rescaled by strike), ΣL

ΣS
, for parameter set III.

D
ow

nl
oa

de
d 

11
/2

5/
19

 to
 1

55
.1

98
.8

0.
33

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSISTENT PRICING OF OPTIONS ON LEVERAGED ETFs 587

where

f1 = f1(u) = uiρ− λ−1(u2 + ui)(1 − exp(−λT ))/2,

f2 = f2(u) = uiρ− λ−1(u2 + ui)/2.

Appendix B. The SVCJ model. Following Duffie, Pan, and Singleton [8] we can use the
SVCJ model to price options on the underlying ETF. Indeed the characteristic function of the
log-ETF price under the SVCJ model is given by
(B.1)
ΦSV CJ
T (u; r, q, κ, γ, θ, V0 , ρ, S0, λ, a, b, ρJ , μv) = exp(A(0, T, u) + iu log(S0) + C(0, T, u)V0),

where

C(t, T, u) = − a1(1− e−a4τ )

2a4 − (a2 + a4)(1− e−a4τ )

and A(t, T, u) = A0(t, T, u) − λτ(1 +miu) + λ exp

(
iau− b2u2

2

)
A1(t, T, u),

where a1 = iu(1 − iu), a2 = iγρu− κ, a3 = 1− iρJμvu, a4 =
√

a22 + a1γ2, τ = T − t, and

A0(t, T, u) = i(r − q)uτ − κθ

(
a2 + a4

γ2
τ +

2

γ2
log

[
1− a2 + a4

2a4
(1− e−a4τ )

])
,

A1(t, T, u) =
a4 − a2

(a4 − a2)a3 + μva1
τ

− 2μva1
(a3a4)2 − (a2a3 − μva1)2

log

[
1− (a2 + a4)a3 − μva1

2a3a4
(1− e−a4τ )

]
.

B.1. The bivariate exponential distribution. The bivariate exponential (BVE) distribu-
tion is a bivariate distribution with exponential marginals. It has joint density

f(x, y) =

{
λ2(λ1 + λ12)F̄ (x, y), x > y,

λ1(λ2 + λ12)F̄ (x, y), x < y,

where

(B.2) F̄ (s, t) := P (X > s, Y > t) = exp [−λ1s− λ2t− λ12 max(s, t)] , s, t > 0.

The marginal distribution functions then satisfy F̄1(x) = e−(λ1+λ12)x and F̄2(y) = e−(λ2+λ12)y,
and we write (X,Y ) ∼ BVE(λ1, λ2, λ12). The characteristic function for the BVE is given by

(B.3)

∫ ∞

0

∫ ∞

0
eisx+itydF (x, y) =

(λ− is− it)(λ1 + λ12)(λ2 + λ12) + stλ12

(λ− is− it)(λ1 + λ12 − is)(λ2 + λ12 − it)
,

where λ := λ1 + λ2 + λ12. Using (B.3) we can calculate the joint characteristic function of X̂
in (B.5) to obtain

ΦX̂(u1, u2; a, b, λ1, λ2, λ12) = E[exp((N − E1)iu1 + E2iu2)]

= E[exp(Niu1)] · E[exp(E1(−iu1) + E2(iu2))]

= exp

(
aiu1− 1

2
b2u21

)
· (λ+iu1−iu2)(λ1+λ12)(λ2+λ12)−u1u2λ12

(λ+iu1−iu2)(λ1+λ12+iu1)(λ2+λ12−iu2)
.(B.4)
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B.2. The jump approximation for the SVCJ model. The goal here is to approximate
X := (X1,X2) as defined in (5.8) with

(B.5) X̂ := (N − E1, E2),

where N ∼ N(a, b) and (E1, E2) ∼ BVE(λ1, λ2, λ12) have a BVE distribution (see [17]) that is
independent of N . We therefore have five distributional parameters (a, b, λ1, λ2, λ12) that we
can choose in approximating X. Using the BVE distribution also allows us to approximate
the variance jumps as well as the correlation between the two components of X in (5.8). If
our jump approximation X̂ = (N −E1, E2) is reasonably accurate, we would expect to have18

E(X1) ≈ E(N − E1) = a− 1

λ1 + λ12
=: k1,

E(X2) ≈ E(E2) =
1

λ2 + λ12
=: k2,

E(X2
1 ) ≈ E((N − E1)

2) = (a2 + b2)− 2a

λ1 + λ12
+

2

(λ1 + λ12)2
=: k3,

E(X1X2) ≈ E((N − E1)E2) =
a

λ2 + λ12
− 1

λ1 + λ2 + λ12

(
1

λ1 + λ12
+

1

λ2 + λ12

)
=: k4,

E(X3
1 ) ≈ E((N − E1)

3) = (a3 + 3ab2)− 3(a2 + b2)

λ1 + λ12
+

6a

(λ1 + λ12)2
− 6

(λ1 + λ12)3
=: k5.

We therefore solve19 the following optimization problem:

min
a,b,λ1,λ2,λ12

(E(X1)− k1)
2 + (E(X2)− k2)

2 +
(
E(X2

1 )− k3
)2

+ (E(X1X2)− k4)
2

+
(
E(X3

1 )− k5
)2

(B.6)

subject to b, λ1, λ2, λ12 ≥ 0.

We note that the optimization problem (B.6) is not convex, and so we are only guaranteed to
find local minima when we solve it. This was never a problem in the numerical experiments of
section 7. We note that it would be easy to automate the process of seeking a good starting
point, resolving (B.6), and repeating these two steps until the objective function in (B.6) is
sufficiently small.

After solving (B.6) we then use X̂ rather than X when modeling the dynamics of Lt. In
order to maintain the martingale property of these dynamics, however, we replace mL in (5.5)
with

m̂ := −p∗ + (1− p∗) · E[exp(N − E1)− 1]

= −p∗ + (1− p∗)
(
exp

(
a∗ +

1

2
b∗2
)

λ∗
1 + λ∗

12

1 + λ∗
1 + λ∗

12

− 1

)
,(B.7)

18We note that E(En
1 ) =

n!
(λ1+λ12)n

, E(En
2 ) =

n!
(λ2+λ12)n

, and E(E1E2) =
1

λ1+λ2+λ12

(
1

λ1+λ12
+ 1

λ2+λ12

)
and

use these expressions in our calculations.
19As we don’t have analytic expressions for E(X1),E(X2),E(X

2
1 ),E(X1X2),E(X

3
1 ), we simply estimated

them using Monte Carlo.D
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where (a∗, b∗, λ∗
1, λ

∗
2, λ

∗
12) is the optimal solution to (B.6). The characteristic function ΦX̂(·)

of X̂ is easily computed (see Appendix B.1), which means we can employ the approach of
Duffie, Pan, and Singleton [8] to compute the characteristic function of the log-LETF price
conditional on N1(T ) = 0. This characteristic function may then be used with the Carr–
Madan [6] approach to approximate Ĉ(L0,K, T ).

B.3. The characteristic function of the approximated log-LETF price. The character-
istic function of the approximated log-LETF price conditional on N1(T ) = 0 is given by

Φ̂N1≡0
L (u;φ, r, q, f, κ, γ, θ, V0 , ρ, L0, λ, a, b, ρJ , μv)

= exp(Â(0, T, u) + B̂(0, T, u) log(L0) + Ĉ(0, T, u)V L
0 ),

where Â, B̂, Ĉ satisfy the ODEs20

dB̂

dt
= 0,

dĈ

dt
= −1

2
B̂2 − B̂ĈρLγL − 1

2
Ĉ2γ2L +

1

2
B̂ + κLĈ,

dÂ

dt
= −(r − qL − λm̂)C − κLθLB̂ + λL − λL · ΦX̂(u, B̂; â, b̂, λ1, λ2, λ12),

with boundary conditions B̂(T, T, u) = iu, Ĉ(T, T, u) = 0, and Â(T, T, u) = 0, and where

(qL, κL, γL, θL, V
L
0 , ρL, L0, λL, â, b̂, λ1, λ2, λ12)

:= (φq + f, κ, |φ|γ, φ2θ, φ2V0, sign(φ)ρ, L0, λ(1− p∗), a∗, b∗, λ∗
1, λ

∗
2, λ

∗
12).

Note that m̂ and ΦX̂ are specified in (B.7) and (B.4). We solved these ODEs, and they have
the following explicit solution:

B̂(t, T, u) = iu,

Ĉ(t, T, u) = − â1(1− e−â3τ )

2â3 − (â2 + â3)(1− e−â3τ )
,

Â(t, T, u) = Â0(t, T, u) − λτ(1 + m̂iu) + λL exp

(
âiu− b̂2u2

2

)
Â1(t, T, u),

where â1 = iu(1 − iu), â2 = γLρLiu− κL, â3 =
√

â22 + â1γ
2
L, τ = T − t,

α(x) =
â3 − â2

x(â3 − â2) + â1
τ − 2â1

(xâ3)2 − (xâ3 − â1)2
log

[
1− (â2 + â3)x− â1

2â3
(1− e−â3τ )

]

20See Duffie, Pan, and Singleton [8] for the derivation of these ODEs.D
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and

Â0(t, T, u) = i(r − qL)uτ − κLθL

(
â2 + â3

γ2L
τ +

2

γ2L
log

[
1− â2 + â3

2â3
(1− e−â3τ )

])
,

Â1(t, T, u) = α(λ2 + λ12) · λ2 + λ12

(λ1 + λ12 + iu)(λ1 + iu)
[(λ1 + λ12)(λ1 + iu) + iuλ12]

− α(λ1 + λ2 + λ12 + iu) · iuλ12(λ+ iu)

(λ1 + λ12 + iu)(λ1 + iu)
.

Appendix C. Additional numerical results.

C.1. Jump approximation parameters for the SVCJ model. We report in Table 12
the jump approximation parameters for the SVCJ model that we obtained by solving the
optimization problem of Appendix B.2. These parameter values were used to obtain Ctran for
the SVCJ model in section 7 (parameter sets II and III) and Appendix C.2 (parameter set I).

C.2. Results for parameter set I. We report in Tables 13 to 15 our numerical results for
the low-volatility environment of parameter set I. We see that there is very little variation in
LETF option prices and implied volatilities across the three models. In addition, the Monte
Carlo prices are very close to the prices obtained via numerical transform inversion for each
model.

Table 12
Optimized jump approximation parameters for the SVCJ model.

Parameter set Leverage ratio SVCJ model

φ a∗ b∗ λ∗
1 λ∗

2 λ∗
12

I 2 0.0641 0.2114 0.9571 17.3016 7.4705
3 0.2524 0.1910 0.1112 8.6678 2.6477
−1 0.0484 0.1113 0.1112 59.6036 23.4571
−2 0.1315 0.2163 0.2282 14.9813 6.9231
−3 0.4228 0 0.0193 9.1694 2.1501

II 2 0.2225 0.5919 0.8507 2.5896 0.1404
3 0.5192 0.6608 0.8826 1.1648 0.0719
−1 0.6063 0.0009 0 8.5916 2.1552
−2 0.9422 0 1.5352 2.5810 0
−3 1.2021 0.0003 1.3639 1.1316 0

III 2 0.0204 0.4170 1.0564 6.7329 0
3 0.1580 0.5781 0.9774 2.9885 0
−1 0.3766 0 0 12.3884 6.3770
−2 0.8057 0 2.0278 6.6275 0
−3 1.0509 0 1.6341 2.9142 0
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Table 13
Option prices on underlying index/ETF for parameter set I computed via Monte Carlo and transform

inversion approaches. Approximate 95% confidence intervals are reported in brackets.

Moneyness BS vol(%) BS price Option price (SV) Option price (SVJ) Option price (SVCJ)

K
S0

ΣBS CBS Csim Ctran Csim Ctran Csim Ctran

0.85 21.47 16.37 16.38 16.38 16.37 16.37 16.37 16.37
[16.38, 16.38] - [16.37, 16.37] - [16.37, 16.37] -

1 20.17 5.92 5.99 5.99 5.92 5.92 5.94 5.94
[5.99, 5.99] - [5.92, 5.92] - [5.94, 5.94] -

1.15 19.20 1.23 1.27 1.27 1.22 1.22 1.23 1.23
[1.27, 1.27] - [1.22, 1.22] - [1.23, 1.23] -

Table 14
Comparison of Black–Scholes implied volatilities: Parameter set I.

Leverage ratio Moneyness Implied volatility (SV) Implied volatility (SVJ) Implied volatility (SVCJ)

φ KS
S0

KL
L0

ΣS ΣL
ΣL
ΣS

ΣS ΣL
ΣL
ΣS

ΣS ΣL
ΣL
ΣS

2 0.85 0.7 21.51 43.11 2.00 21.43 43.14 2.01 21.43 43.21 2.02
1 1 20.41 40.66 1.99 20.17 40.22 1.99 20.22 40.33 1.99

1.15 1.3 19.44 38.82 2.00 19.18 38.26 1.99 19.24 38.41 2.00

3 0.85 0.55 64.92 3.02 65.48 3.06 65.22 3.04
1 1 60.79 2.98 60.26 2.99 60.27 2.98

1.15 1.45 58.17 2.99 57.30 2.99 57.48 2.99

−1 0.85 1.15 21.43 1.00 21.20 0.99 21.25 0.99
1 1 20.49 1.00 20.21 1.00 20.28 1.00

1.15 0.85 19.39 1.00 19.27 1.00 19.25 1.00

−2 0.85 1.3 42.91 1.99 42.38 1.98 42.51 1.98
1 1 41.16 2.02 40.60 2.01 40.75 2.02

1.15 0.7 38.77 1.99 38.81 2.02 38.64 2.01

−3 0.85 1.45 64.45 3.00 63.59 2.97 63.82 2.98
1 1 62.00 3.04 61.18 3.03 61.40 3.04

1.15 0.55 58.04 2.99 58.82 3.07 58.24 3.03
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Table 15
Comparing leveraged ETFs option prices with approximate prices in parameter set I. Approximate 95%

confidence intervals are reported in brackets.

Leverage ratio Moneyness Option price (SV) Option price (SVJ) Option price (SVCJ)

φ KS
S0

KL
L0

Csim Ctran Csim Ctran Csim Ctran

2 0.85 0.7 31.81 31.80 31.81 31.81 31.82 31.79
[31.80, 31.81] - [31.80, 31.81] - [31.81, 31.82] -

1 1 11.65 11.65 11.53 11.53 11.56 11.55
[11.65, 11.66] - [11.53, 11.54] - [11.56, 11.57] -

1.15 1.3 2.91 2.91 2.80 2.80 2.83 2.84
[2.91, 2.91] - [2.79, 2.80] - [2.82, 2.83] -

3 0.85 0.55 46.75 46.74 46.80 46.79 46.78 46.76
[46.74, 46.76] - [46.79, 46.81] - [46.77, 46.78] -

1 1 17.23 17.21 17.08 17.07 17.08 17.05
[17.22, 17.23] - [17.07, 17.09] - [17.08, 17.09] -

1.15 1.45 4.98 4.98 4.79 4.79 4.83 4.81
[4.97, 4.98] - [4.78, 4.79] - [4.82, 4.83] -

−1 0.85 1.15 1.66 1.66 1.61 1.61 1.62 1.64
[1.66, 1.66] - [1.61, 1.61] - [1.62, 1.62] -

1 1 6.01 6.01 5.93 5.93 5.95 5.96
[6.01, 6.02] - [5.93, 5.94] - [5.95, 5.96] -

1.15 0.85 16.10 16.10 16.09 16.08 16.08 16.08
[16.10, 16.10] - [16.08, 16.09] - [16.08, 16.08] -

−2 0.85 1.3 3.78 3.80 3.67 3.67 3.69 3.76
[3.78, 3.78] - [3.66, 3.67] - [3.69, 3.70] -

1 1 11.79 11.79 11.64 11.63 11.68 11.72
[11.79, 11.80] - [11.63, 11.64] - [11.67, 11.68] -

1.15 0.7 31.34 31.33 31.35 31.33 31.33 31.33
[31.34, 31.35] - [31.34, 31.35] - [31.32, 31.34] -

−3 0.85 1.45 6.43 6.46 6.23 6.24 6.28 6.31
[6.43, 6.44] - [6.22, 6.23] - [6.28, 6.29] -

1 1 17.56 17.55 17.33 17.31 17.39 17.41
[17.55, 17.56] - [17.33, 17.34] - [17.39, 17.40] -

1.15 0.55 46.22 46.20 46.27 46.25 46.23 46.25
[46.21, 46.22] - [46.26, 46.28] - [46.22, 46.24] -
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