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We consider dynamic asset allocation problems where the agent is required to pay capital gains taxes on her investment
gains. These are very challenging problems because the tax owed whenever a security is sold depends on the cost basis,
and this results in high-dimensional problems, which cannot be solved exactly except in the case of very stylized problems
with just one or two securities and relatively few time periods. In this paper, we focus on exact and average cost-basis
problems, make the limited use of losses (LUL) assumption and develop simple heuristic trading policies for these problems
when there are differential tax rates for long- and short-term gains and losses. We use information relaxation-based duality
techniques to assess the performance of these trading policies by constructing unbiased lower and upper bounds on the
(unknown) optimal value function. In numerical experiments with as many as 80 time periods and 25 securities we find
our best suboptimal policy is within 3–10 basis points of optimality on a certainty equivalent (CE) annualized return
basis. The principal contribution of this paper is in demonstrating that while the primal problem remains very challenging
to solve exactly, we can easily solve very large dual problem instances. Moreover, dual tractability extends to standard
problem variations, including problems with random time horizons, no wash sales constraints, intertemporal consumption
and recursive utility, as well as the step-up feature of the U.S. tax code, among others.
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1. Introduction
Dynamic asset allocation problems have played a central
problem in finance since the pioneering work of Samuel-
son (1969), Merton (1969) and Hakansson (1970). Since
then, many researchers have studied the problem of how
to dynamically allocate wealth among financial securities
to optimize a given objective function, which is typically
some combination of the expected utility of terminal wealth
and lifetime consumption. Most of the work to date has
considered problems with frictionless markets, and differ-
ent problem formulations are typically obtained by vary-
ing the price dynamics and/or agent preferences. Relatively
little work, however, has focused on asset allocation in
the presence of capital gains taxes. This is not because
the problem is unimportant. Indeed the problem of how
to efficiently invest and rebalance a portfolio in the pres-
ence of capital gains taxes is of considerable interest to
practitioners and academics alike. Rather, the problem has
received relatively little attention because it is so challeng-
ing to solve. This is because the taxes that are owed when-
ever a security is sold generally depends on its cost basis,
i.e., the price(s) at which the security was originally pur-
chased. This feature results in high-dimensional and path-
dependent problems, which can only be solved in extremely
simple cases.

Constantinides (1984) was among the first to study the
asset allocation problem with taxes. He showed that the

optimal investment policy can be separated from the tax
timing problem if short sales are allowed and are costless.
In particular, when an agent needs to reduce her position
in a stock with embedded capital gains, she prefers to short
sell the stock rather than selling from her current holdings.1

She therefore succeeds in rebalancing her portfolio without
triggering a tax liability. In practice, of course, short sales
incur collateral costs and may also not be permitted by the
tax authorities.

Dybvig and Koo (1996) studied the asset allocation prob-
lem with taxes when short sales constraints are imposed
so that the separation result of Constantinides does not
apply. They formulated the problem using the so-called
exact cost basis and solved a problem with just one risky
stock and four time periods. More recently, DeMiguel and
Uppal (2005) used a stochastic programming approach to
solve problems with just one stock and 10 time periods,
as well as problems with two stocks and 7 time peri-
ods. Unfortunately, solving larger problems is numerically
intractable because the number of state variables and num-
ber of constraints grows exponentially with the number of
time periods.

An alternative modeling approach is to use the average
cost basis when determining tax liabilities. The average cost
basis for a given security is the weighted average purchase
price of the current holdings of the security in the portfolio.
The current U.S. tax code requires agents to use exact cost
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basis for individual stocks, and gives agents an additional
option to use the average cost basis for mutual fund shares.
While using the average cost basis is generally suboptimal
from the agent’s point of view, it requires less record keep-
ing, and from a modeling point of view, does not result
in the exponential explosion of state variables that occurs
when the exact cost basis is used. Average cost-basis prob-
lems are therefore more amenable to dynamic programming
(DP) but are nonetheless still challenging to solve. In par-
ticular, due to the so-called curse of dimensionality, it is
only possible to exactly solve problems with just one or
two stocks even when the average cost basis is used.

Dammon et al. (2001, 2004) were among the first to
consider the average cost-basis problem. They considered
problems with just one stock and multiple time periods.
Dammon et al. (2002) and Garlappi et al. (2001) consid-
ered the case of two stocks. Gallmeyer et al. (2006) solved
a two stock problem as well as a problem with just one
stock and a put option on that stock. It is worth noting
that DeMiguel and Uppal (2005) showed that the certainty
equivalent loss in wealth was small when using the aver-
age cost basis instead of the exact cost basis. Although
they only showed this for the relatively small problem sizes
they considered, one would expect this observation to hold
more generally. Tahar et al. (2010) formulated the contin-
uous time version of the model in Dammon et al. (2001)
and studied properties of the value function in a one stock
infinite-horizon problem.

We also note that most of the literature on tax-aware
asset allocation assumes the so-called full use of losses
(FUL) model where the net capital losses in any given
period result in a tax rebate, which can be invested immedi-
ately. This is in contrast to the limited use of losses (LUL)
model where the net capital losses do not result in an imme-
diate tax rebate; instead, the net losses can only be used to
offset capital gains in future periods. Only the LUL model
is consistent with the tax codes encountered in practice but
LUL problems are more challenging to solve than FUL
problems. This is because in the LUL case, we need to keep
track of the sum of prior losses that have not already been
used to offset gains. Gallmeyer and Srivastava (2010) dis-
cussed the impact of the LUL model, while more recently,
Ehling et al. (2010) solved a two-stock average cost-basis
LUL problem with 80 time periods.2

In this paper, we focus on the exact and average cost-
basis LUL cases since these problems are the most realistic
and challenging to solve. We develop suboptimal and sim-
ple heuristic trading policies for these problems when there
are differential tax rates for short- and long-term gains or
losses. We then use duality techniques based on informa-
tion relaxations to assess the performance of these trading
policies by constructing unbiased lower and upper bounds
on the (unknown) optimal value function. In numerical
experiments with as many as 80 time periods and 25 securi-
ties, we find our best suboptimal policy is within 3–10 basis
points of optimality on a certainty-equivalent annualized

return basis. So instead of trying to solve these problems
exactly, we settle for provably good suboptimal solutions.

The principal contribution of the paper is to demonstrate
that much larger problems can now be tackled through the
use of sophisticated optimization techniques and duality
methods based on information relaxations (Brown et al.
2010, Rogers 2007). To the best of our knowledge, we
are the first to construct valid dual bounds for tax-aware
dynamic asset allocation problems. We show that the dual
formulations of the exact cost-basis problems are much
easier to solve than the corresponding primal problems.
In contrast, while the average cost-basis (primal) problem
is relatively easier to solve than the exact cost-basis (pri-
mal) problem, the dual of the average cost-basis problem
is nonconcave and thus more difficult to solve. We use the
polyhedral branch-and-cut approach of Tawarmalani and
Sahinidis (2005) to bound the dual problem instances so
that valid lower and upper bounds for the average cost-basis
problem can still be obtained. This approach should be use-
ful in other applications where the dual problem instances
can sometimes fail to be convex. Moreover, we show the
tractability of the dual problem instances extends to stan-
dard problem variations, including problems with random
time horizons, intertemporal consumption with recursive
utility, no wash-sales constraints and the step-up feature of
the U.S. tax code, among others.

In addition, our numerical results support the conclu-
sion of DeMiguel and Uppal (2005). In particular, we show
numerically that the certainty equivalent loss in wealth is
very small when using the average cost basis instead of the
exact cost basis. Finally, we note that our main numeri-
cal application includes differential tax rates for short- and
long-term capital gains or losses. In addition to being more
realistic, allowing for differential tax rates allows us to eval-
uate simple heuristic policies that are employed in practice.
For example, a very common and sensible rule of thumb
is that one should always avoid paying short-term capital
gains taxes. We can easily evaluate simple heuristic poli-
cies containing such rules in our differential tax rate frame-
work. Moreover, in our numerical results, we find that such
heuristics can perform very well.

The remainder of this paper is organized as follows. In
Section 2, we formulate the tax-aware dynamic asset alloca-
tion problem, focusing mainly on the exact cost-basis LUL
problem with differential tax rates on short- and long-term
gains. We describe a suboptimal policy and some simple
heuristics for tackling this problem in Section 3. In Sec-
tion 4, we describe how we use recently developed tech-
niques based on information relaxations to construct dual
bounds for these tax-aware portfolio optimization problems.
Numerical results are presented in Section 5. We consider
the average cost-basis problem in Section 6 and conclude
in Section 7. Appendix A provide further solution details
as well as the no-tax problem formulation while various
extensions are considered in an online appendix (avail-
able as supplemental material at http://dx.doi.org/10.1287/
opre.2016.1517).
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2. Main Problem Formulation
Our basic framework is an extension of the multiple assets
model of Dybvig and Koo (1996) and DeMiguel and Uppal
(2005). We consider the problem of a risk-averse agent who
can trade in multiple assets over a finite-time horizon. We
assume that borrowing and short sales are prohibited so
that the aforementioned separation result of Constantinides
(1984) does not apply. The agent must pay taxes on any
realized capital gains that she incurs and the tax rate will, in
general, depend on whether the gains are short or long term.
We define short-term gains (and losses) to be those realized
from selling securities that have been held for mst periods
or less, where 0 <mst < T and the subscript “st” denotes
“short term.” In contrast, long-term gains and losses are
those realized from selling securities that have been held for
more than mst periods. Let � s and � l denote the short- and
long-term tax rates, respectively. We assume 0 < � l < � s ,
which, of course, is typically true in practice as govern-
ments seek to encourage long-term investing.

We assume a discrete-time economy with equally spaced
trading dates indexed by t = 0111 0 0 0 1 T . The market con-
sists of a risk-free cash account that earns an after -tax risk-
free return of r0 per period, and K risky securities. Let pt1 k

denote the price of the kth risky security at time t, and let
pt 2= 6pt111 0 0 0 1 pt1K7

′ denote the vector of security prices
at time t. Without loss of generality, the initial security
prices are set to one, i.e., p0 = 611 0 0 0 117′. Let rt1 k denote
the stochastic gross return of the kth risky security between
times t − 1 and t, and let rt 2= 6rt111 0 0 0 1 rt1K7

′ denote the
vector of gross returns. Then,

pt = pt−1 · rt1 (1)

where pt−1 · rt is the componentwise multiplication of pt−1

and rt . We allow for the possibility that rt+1 is driven by a
Markovian state vector zt , so that rt+1 is independent of rj
for all j ¶ t conditional on zt .

Let bt denote the cash account holding at time t, and let
nj1 t1 k denote the number of units of the kth security that
were purchased at time j ¶ t and still held in the agent’s
portfolio after trading at time t for t = 01 0 0 0 1 T . The exact
cost basis of these nj1 t1 k units is then given by pj1 k. Let
nj1 t 2= 6nj1 t111 0 0 0 1 nj1 t1K7

′, 0 ¶ j ¶ t denote the stock hold-
ings at time t. Since we do not allow short sales or bor-
rowing, we must have that

bt ¾ 01 nt1 t ¾ 01 t ¾ 01 and

nj1 t−1 ¾ nj1 t ¾ 01 t ¾ 11 0 ¶ j < t0
(2)

Note that the sequence of vectors 84bt1nj1 t52 0 ¶ j ¶ t9Tt=0
implicitly defines a trading strategy. Next, we define the tax
implications of this trading strategy.

It is standard in the tax-aware portfolio selection litera-
ture to assume FUL whereby realized capital losses earn
an immediate tax rebate. See, for example, Dybvig and
Koo (1996), Dammon et al. (2001, 2002, 2004), Garlappi
et al. (2001), DeMiguel and Uppal (2005), Gallmeyer et al.
(2006), and Tahar et al. (2010). Furthermore, these papers

typically ignore how long the securities have been held and
assume that all capital gains are taxed at the same rate.
In practice, however, tax codes only allow for the LUL in
that an agent can only use realized capital losses to offset
realized capital gains. Any unused capital losses can then
be carried forward to offset future capital gains. Moreover,
tax codes often apply differential tax rates to short- and
long-term capital gains. We will focus here on the more
challenging problem, which assumes LUL and differential
tax rates for short- and long-term gains. In addition, the
current U.S. tax code requires that short- and long-term
losses must be used first to offset gains of the same type.
If short-term losses exceed short-term gains, the agent is
allowed3 to use the excess short-term losses to offset excess
long-term gains.

We model these tax rules as follows. Let lst−1 (resp. llt−1)
denote the accumulated unused short-term (resp. long-term)
losses carried forward from time t − 1. We let

cst =

t−1
∑

j=t−mst

4pt −pj5
′4nj1 t−1 −nj1 t5 and

clt =

t−mst−1
∑

j=0

4pt −pj5
′4nj1 t−1 −nj1 t5

denote the short-term and long-term net realized proceeds,
respectively, at time t. (Note that nj1 t−1 −nj1 t are the units
of securities with cost-basis pj that are sold at time t.) The
short-term gains gst and the excess “intermediate”4 short-
term losses l̂st at time t are then given by

gst = max8cst + lst−11091 l̂st = min8cst + lst−11090 (3)

Prepaying additional taxes early is never optimal in this
model, since one can invest that amount in the risk-free
cash account, which earns a nonnegative interest rate r0.
Furthermore, since � s > � l, it is never optimal to use short-
term losses to offset long-term gains before completely off-
setting short-term gains. Therefore the optimal solution will
never allow for gst > 0 and l̂st < 0 to occur simultaneously,
and thus (3) can be linearized as follows:

gst + l̂st = cst + lst−1 =

t−1
∑

j=t−mst

4pt −pj5
′4nj1 t−1 −nj1 t5+ lst−10

Next, we consider the long-term gains and losses. The
unused long-term losses llt and the “intermediate” long-term
gains ĝlt at time t are given by

ĝlt = max8clt + llt−11091 llt = min8clt + llt−11090 (4)

Again, because prepaying additional taxes early is subop-
timal, it will never be optimal to have ĝlt > 0 and llt < 0
to occur simultaneously. Thus (4) can be replaced by the
linear constraint

ĝlt + llt = clt + llt−1 =

t−mst−1
∑

j=0

4pt −pj5
′4nj1 t−1 −nj1 t5+ llt−10
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The linearization of the dynamics of gst and ĝlt is crucial
to ensure that the resulting portfolio selection problem is
convex and therefore tractable.

At this point, we have used only short-term (resp. long-
term) losses to offset short-term (resp. long-term) gains.
We now allow5 excess short-term losses to offset excess
long-term gains via the constraints

glt + lst = ĝlt + l̂st 1 0 ¶ glt ¶ ĝlt 1 l̂st ¶ lst ¶ 01

where the two inequalities above guarantee that glt and lst
move in the correct direction. Note that we have implic-
itly assumed that unused losses lst and llt can be carried
forward indefinitely and don’t have a “use by date.” Since
� s > � l, the agent may prefer rolling over the excess short-
term losses rather than fully using them to offset long-term
gains; the constraint above allows for this possibility.

The boundary conditions on 4gst 1 l̂
s
t 1 ĝ

l
t 1 l

l
t5 are

gst ¾ 01 l̂st ¶ 01 t ¾ 11 and

ĝlt ¾ 01 llt ¶ 01 t >mst0
(5)

We also need the following initial conditions:

lst = l̂st 1 glt = llt = 01 1 ¶ t ¶mst1 and ls0 = 00 (6)

They reflect the fact that there is no long-term gains from
trading in the first mst periods and our assumption that the
initial short- and long-term carried losses are zero. This, of
course, is easy to change if we begin at time t = 0 with
some short- and/or long-term carried losses.

The agent is assumed to have an initial wealth w0, and
the objective is to maximize the agent’s expected utility of
terminal after-tax wealth b. Note that under this objective,
we require all risky security positions to be liquidated at
the end of the time horizon, T , and any taxes owed at this
time must be paid. We assume here that the agent’s utility
function U belongs to the CRRA class of utility functions
so that

U4b5 2=















b1−�

1 −�
1 � > 0 and � 6= 11

ln4b51 � = 11

(7)

where � is the coefficient of relative risk aversion. Thus
the tax-aware asset allocation problem can then be formu-
lated as

max
4bt 1nj1 t 1 g

s
t 1 l

s
t 1 g

l
t 1 l

l
t 1 ĝ

l
t 1 l̂

s
t 5∈Ft 1

t=010001T

Ɛ0

[

b
1−�
T

1 −�

]

(8)

s.t.

b0 +p′

0n010 =w01 (9)

bt +
t
∑

j=0

p′

tnj1 t + � sgst + � lglt = bt−1r0 +

t−1
∑

j=0

p′

tnj1 t−11

t ¾ 11 (10)

gst + l̂st =

t−1
∑

j=t−mst

4pt −pj5
′4nj1 t−1 −nj1 t5+ lst−11

t ¾ 11 (11)

ĝlt + llt =
t−mst−1
∑

j=0

4pt −pj5
′4nj1 t−1 −nj1 t5+ llt−11

t >mst1 (12)

glt + lst = ĝlt + l̂st t >mst1 (13)

0 ¶ glt ¶ ĝlt t >mst1 (14)

l̂st ¶ lst ¶ 0 t >mst1 (15)

together with the nonnegativity trade constraints (2), the
boundary and initial conditions on the tax variables (5)
and (6), as well as security price and state variable dynam-
ics. Note that we use 8Ft9t=010001T to denote the filtration
generated by the security price vectors as well as any other
state variables in the model. (9) is the initial budget con-
straint, and budget constraints for t ¾ 1 are given by (10)
where the right-hand side is the pretrade wealth at time t
and the sum of the first two terms on the left-hand side
represents the posttrade wealth after paying taxes of � sgst
and � lglt on the short- and long-term gains, respectively.
Since the short- and long-term capital gains gst and glt are
constrained to be nonnegative, the agent can never receive
a tax rebate in (10). The decision variables nj1 t allow the
agent to track the exact cost basis of each share in the port-
folio. Recall that short selling and borrowing via the cash
account are ruled out by nonnegativity constraints (2). The
constraints (11)–(15), the boundary conditions (5), and the
initial conditions (6) define the dynamics of the short- and
long-term gains. Since the objective is concave, and all con-
straints are linear, (8) is a convex optimization problem.
Note also that in this formulation, we allow6 so-called wash
sales so that securities can be sold and purchased back in
the same period. In the online appendix, we describe how
wash sales can be easily handled when solving dual prob-
lem instances.

To simplify later problem formulations we define xt 2=
6bt n

′
01 t 0 0 0 n′

t1 t g
s
t lst glt llt ĝ

l
t l̂st 7

′ and p02 t 2= 6p′
0 0 0 0 p′

t7
′,

the vector of all risky security prices up to and includ-
ing time t. Together xt−1 and p02 t completely describe the
positions and cost basis of the agent’s portfolio just before
trading at time t. We denote the set of feasible trades at
time t by �t . Thus

�0 2=
{

x0 � x0 ∈F0 satisfies (2) at t = 0 and (9)
}

(16)

�t4xt−11p02 t5 2=
{

xt � xt ∈Ft satisfies (2), (5), (6)1

and (10)–(15)
}

1 t ¾ 10 (17)

Unfortunately, it is impossible to solve the exact cost-basis
LUL problem due to the large number of state variables,
constraints, and path dependence induced by the need to
keep track of the cost basis for each security. Instead, we
seek good suboptimal policies, and computing them is the
subject of Section 3.
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3. Feasible Investment Policies

We now discuss several feasible policies for the tax-aware
asset allocation problem that we formulated in Section 2.
We note that each of these policies can be easily simulated
so that it is straightforward to obtain unbiased estimators
of their performances. Given that these policies are feasi-
ble, it is also clear that these estimators are lower or pri-
mal bounds on the optimal value function, V LUL

0 . We begin
with policies based on the solution to the no-tax problem.
The no-tax problem is formulated in Appendix A.1 and is
relatively easy to solve numerically as long as the state vec-
tor zt is low dimensional. When discussing no-tax portfo-
lios, we will use b̃t and ñt to denote the posttrade fractions
of wealth wt invested in the cash account and risky secu-
rities, respectively. This is in contrast to the formulation in
Section 2, where bt is the number of dollars invested in
the cash account and nj1 t denotes the number of units of
the risky securities purchased at time j and still held after
trading at time t.

3.1. The Tax Blind Policy

Under the tax blind policy, we assume the agent simply
completely ignores capital gains taxes. In particular, at each
time period, she liquidates her entire portfolio of risky secu-
rities, pays short-term capital gains taxes on her net gains,
and then trades to the no-tax optimal portfolio weights
4b̃∗

t 1 ñ
∗
t 5. This strategy is obviously very naive but it does

serve as a baseline policy that we can use to compare the
performance of our other strategies.

3.2. The Tax-Aware Heuristic Policy

The tax-aware policy is a heuristic policy where the agent
follows two basic principles:

(a) Harvest all losses in every time period.
(b) Always avoid paying short-term capital gains taxes.

Subject to these two rules, the agent attempts to trade
toward the no-tax optimal portfolio weights. More specifi-
cally, in each time period, the heuristic takes the following
steps:

(1) Harvest all short- and long-term losses by selling any
shares whose cost basis is higher than the current price.
Let ls (resp. ll) denote the sum of the harvested short-term
(resp. long-term) losses and unused short-term (resp. long-
term) losses carried from previous periods.

(2) Let wt denote the pretrade portfolio wealth, and
recall that 4b̃∗

t 1 ñ
∗
t 5 are the optimal portfolio weights implied

by the no-tax problem. Then, the target dollar position for
the cash account and securities are given by wt b̃

∗
t and wtñ

∗
t ,

respectively.
(3) Sell shares of all risky securities with dollar position

higher than the target dollar position. Begin by first selling
shares with embedded long-term gains. If there are lots with
more than one cost basis, sell in proportion to the dollar
amount held in each cost basis.

At this point, any shares that still need to be sold to reach
the target dollar position have embedded short-term gains.
Let ŝk denote the total dollar amount of shares with short-
term gains that need to be sold for security k = 11 0 0 0 1K.
Sell sk = min84ŝk/

∑

j ŝj5l
s1 ŝk9 dollars worth of shares of

security k.
(4) The short-term gains realized in the previous step

can be fully offset by ls , and thus there is no need to pay
short-term capital gains taxes.

Offset the realized long-term gains by first using ll and
then by using any remaining unused short-term losses. Pay
long-term taxes if the net long-term gains are positive.

(5) If the position in the cash account is higher than
the target dollar amount, designate the difference b̂t as free
capital available for investing in the risky securities. Let
d̂k denote the dollar amount that needs to be purchased to
reach the target dollar position for security k = 11 0 0 0 1K.
Purchase7 dk = 4d̂k/

∑

k d̂k5b̂t dollars worth of security k.
To better understand8 the mechanics of this policy, we

provide some examples in Appendix A.2.

3.3. The Rolling Buy-and-Hold Policy

The rolling buy-and-hold (RBH) policy is constructed as
follows. At each time t, the agent assumes she can trade
at the current time t, but that she will next be allowed to
trade again only at time T when her portfolio is liquidated.
Suppose the agent’s holdings after trade at time t are given
by 4bt1n01 t1 0 0 0 1nt1 t5. Then, the realized cash position bT
at time T is given by

bT = btr
T−t
0 +

t
∑

j=0

p′

T nj1 t − � sgsT − � lglT 1

where gsT is the realized short-term gains and glT is the real-
ized long-term gains. When the current period t < T −mst,
all risky positions nj1 t will become long-term holdings by
time T , and gsT = 0. Thus, short-term gains gsT are pos-
sibly nonzero for only t ∈ 8T − mst1 0 0 0 1 T 9. Since mst is
typically small,9 in practice, we choose to combine short-
and long-term gains and pay taxes at the long-term tax rate
in the final mst periods, and thus we solve the following
simplified version of the problem to select the holdings
4bt1n01 t1 0 0 0 1nt1 t5:

max
xt 1 bT 1 gT

Ɛt

[

b
1−�
T

1 −�

]

(18)

s.t. xt ∈�t4xt−11p02 t51

bT = btr
T−t
0 +

t
∑

j=0

p′

T nj1 t − � lgT 1 (19)

gT ¾
t
∑

j=0

4pT −pj5
′nj1 t + llt + lst 1 (20)

gT ¾ 01 (21)

where �t4xt−11p02 t5 denotes the set of feasible trades at
time t defined in (16) and (17). The constraint (19) defines
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the terminal wealth bT , which assumes no trading is allowed
between times t and T , and all taxable gains are long-term
gains. Note that we do not, however, violate the LUL rule
with differential short- and long-term tax rates when actu-
ally implementing the strategy. In particular, the trading
decisions at time t are constrained in the feasible set �t ,
where short- and long-term taxes are handled correctly.

After the agent implements the optimal solution of
(18)–(21), she holds this position until time t + 1 at which
point she will rebalance the portfolio by solving (18)–(21)
again but now with t = t + 1.

3.3.1. Solution Approach. We obtain an unbiased
estimate for the value function of the RBH policy by aver-
aging the performance over I sample paths. Over each path
i and each time instant t along the path, we need to com-
pute the optimal trade by solving (18). The expectation in
the objective function of (18) cannot be evaluated analyti-
cally, so instead, we approximate it by taking samples. In
particular, we use low-discrepancy sequences10 (LDS) to
generate M scenarios p4m5

T , m = 11 0 0 0 1M for the random
time T security prices. At time t, we choose the RBH trades
by solving the following approximation to (18):

max
xt 1 b

4m5
T 1 g

4m5
T

1
M

M
∑

m=1

4b
4m5
T 51−�

1 −�
(22)

s.t. xt ∈�t4xt−11p02 t51

b
4m5
T = btr

T−t
0 +

t
∑

j=0

p4m5
T

′

nj1 t − � lg
4m5
T 1

1 ¶m¶M1 (23)

g
4m5
T ¾

t
∑

j=0

4p4m5
T −pj5

′nj1 t + llt + lst 1

1 ¶m¶M1 (24)

g
4m5
T ¾ 0 1 ¶m¶M1 (25)

where � lg
4m5
T is the capital gains taxes paid after liquidat-

ing the portfolio at time T in the mth scenario and b
4m5
T is

the resulting after-tax cash holding. The optimization prob-
lem (22)–(25) has11 2M +K4t + 15+ 7 decision variables
and 2M + 6 constraints. Since the objective function (22)
is concave and all constraints are linear, (22) is a convex
optimization problem, and in principle, can be solved using
standard12 solvers.

We need the number of scenarios M for the time T secu-
rity prices to be large to adequately approximate the expec-
tation in (18). For the numerical results of Section 5 where
we had 25 risky securities and 80 time periods, we chose
M = 101000 scenarios. MOSEK then required 15 minutes13

to solve (22)–(25) for all trading periods on a given sam-
ple path. If one uses N = 51000 sample paths to estimate
the value of the RBH policy, the total running time is then
approximately 52 days! We therefore need an alternative
approach to solving the approximate RBH problem.

Toward this end, recall that (24) and (25) are a reformu-
lation of the LUL tax rule

g
4m5
T 4xt5= max

{ t
∑

j=0

4p4m5
T −pj5

′nj1 t + llt + lst 10
}

0 (26)

Thus (22) can be reformulated as

max
xt

1
M41−�5

·

M
∑

m=1

(

btr
T−t
0 +

t
∑

j=0

p4m5
T

′

nj1 t−� lg
4m5
T 4xt5

)1−�

s.t. xt ∈�t4xt−11p02 t51

(27)

where there are now a total of K4t + 15 + 7 variables
and only 6 constraints, namely, (10) and (11)–(15), which
are implicitly present in �t4xt−11p02 t5. Note that the size
of the problem (27) is now independent of M and much
smaller than that of problem (22)–(25). However, the func-
tion g

4m5
T 4xt5 is nonsmooth, and therefore standard solvers

that rely on first- and second-order derivatives cannot be
used to solve (27).

The nonlinear nonsmooth function max8a109 can be ap-
proximated by the smooth function

��4a5= 41/�5 ln4e�a + 151

� > 0, in the sense that max8a109 ¶ ��4a5 ¶ max8a109
+ 2/�. Thus ��4a5 converges uniformly to max8a109 as
� → �. We therefore approximate g

4m5
T 4x5 in (27) by the

smooth function

g̃
4m5
T 4xt5

=��4g
4m5
T 4x55

=
1
�

ln
(

exp
(

�

( t
∑

j=0

4p4m5
T −pj5

′nj1 t+llt+lst

))

+1
)

(28)

to obtain the following smooth approximate optimization
problem:

max
xt

1
M41−�5

·

M
∑

m=1

(

btr
T−t
0 +

t
∑

j=0

p4m5
T

′

nj1 t−� lg̃
4m5
T 4xt5

)1−�

s.t. xt ∈�t4xt−11p02 t50

(29)

In our numerical experiments, we solved (29) with � set
equal to 50 using a sequential quadratic programming
(SQP) approach, the details of which can be found in
Appendix A.4. We typically found that our SQP algo-
rithm converged after only two or three iterations. The time
required to solve the resulting quadratic programming prob-
lems was significantly smaller than that required to solve
the general convex programming problem (22). Returning
to our earlier example of 25 stocks and 80 time periods
with M = 101000 scenarios, the SQP approach requires
approximately 20 seconds to solve all 80 problems on one
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sample path.14 Computing the RBH policy along 5,000
sample paths to estimate the value function therefore takes
approximately 28 hours. This corresponds to approximately
a 98% improvement in the solution time.

4. Evaluating Suboptimal Policies via
Information Relaxations

The performance of any feasible policy for the exact cost-
basis LUL problem in (8) is clearly a lower bound on the
optimal value function V LUL

0 . However, since V LUL
0 is not

computable, we cannot assess the quality of any feasible
policy. We can overcome this by computing valid upper
bounds for the value function. We show in Appendix A.1
that the no-tax value function V N

0 is an upper bound for
V LUL

0 . This bound, however, is typically very weak, and
therefore provides relatively little information regarding the
quality of the suboptimal feasible policies. In this sec-
tion, we show how to construct tighter upper (or dual)
bounds using the recently developed information relaxation
approach of Rogers (2007) and, in particular, Brown et al.
(2010). We refer the reader to Brown et al. (2010) for the
theoretical details underpinning the methods described in
this section.

4.1. Dual Problem Formulation

Let p 2= 6p′
0 000 p′

T 7
′, z 2= 6z′

0 000 z′
T 7

′, and x 2= 6x′
0 000 x′

T 7
′

denote the entire sequence of security prices, market states,
and trade decision vectors, respectively. A trading pol-
icy can be interpreted as a function x4p1 z5 that maps
sequences of prices p and market states z to a sequence
of trading decisions x. A feasible trading policy is one
where each individual decision xt is in the set of feasible
trades, �t . A feasible adapted policy is a feasible policy
that is Ft-adapted. Let XL denote the set of all feasible
adapted policies for the exact cost-basis LUL problem. The
agent wants to compute a feasible adapted policy that max-
imizes the expected utility of the after-tax terminal wealth.
Thus the optimization problem (8) can be reformulated as

V LUL
0 = max

x∈XL

{

Ɛ0

[

b
1−�
T

1 −�

]}

0 (30)

We will call a function �4x5 a dual feasible penalty
if Ɛ06�4x4p1 z557 ¶ 0 for all feasible Ft-adapted policies,
x4p1 z5 ∈XL. It is then clear that

V LUL
0 ¶ max

x∈XL

{

Ɛ0

[

b
1−�
T

1 −�
−�4x5

]}

0

Suppose at time t = 0 the agent has perfect information
of all future security prices and market states before she
makes any trading decisions. It then follows that

V LUL
0 ¶ max

x∈XL

{

Ɛ0

[

b
1−�
T

1 −�
−�4x5

]}

¶ Ɛ0

[

max
x∈�

{

b
1−�
T

1 −�
−�4x5r

}]

=2 Vup (31)

where � denotes the set of feasible trades under the assump-
tion of perfect information. Brown et al. (2010) and Rogers
(2007) establish that strong duality holds in (31), i.e., there
exist dual feasible penalties for which Vup = V LUL

0 . We will
construct our dual penalty �4x5 using the solution to the
no-tax asset allocation problem. We note at this point that
the penalty will be linear in the actions x. Moreover, it fol-
lows from results in Brown and Smith (2011) that the result-
ing dual bound will be at least as good as the upper bound
provided by the no-tax solution. Brown and Haugh (2013)
also provide some insight on how much of an improvement
over the no-tax solution might be expected. Further details
on these observations as well as the formulation and solu-
tion of the no-tax problem can be found in Appendices A.1
and A.3.

The dual bound of (31) leads itself to estimation via
Monte Carlo simulation: we simply simulate I sample paths
of the security prices and market states, and on each path,
we solve the maximization problem inside the expectation
in (31). If V 4i5

up is the optimal solution of the problem on the
ith path, then

∑I
i=1 V

4i5
up /I is an unbiased estimate of Vup.

Moreover, we can estimate Vup to any desired accuracy by
choosing a large enough number of paths, I .

Suppose now we have simulated one sample path for the
security prices and state variables. The inner maximization
problem in (31) is a deterministic optimization problem.
Since b1−�/41 − �5 is concave and we only consider dual
penalties �4x5 that are linear in x, the inner problem is a
convex optimization problem with linear constraints. More-
over, for the dual problem, we can significantly reduce the
number of constraints in (2) by using as decision vari-
ables the units nt1 t purchased at time t, the units n̂j1 t 2=
nj1 t−1 −nj1 t of cost-basis pj sold at time t, and the cash
account bt . The new set of variables must satisfy the fol-
lowing constraints, which are equivalent to (2):

bt ¾ 01 nt1 t ¾ 01 n̂j1 t ¾ 01 t ¾ 01 0 ¶ j < t1

and nt1 t =

T
∑

j=t+1

n̂t1 j t ¾ 00 (32)

The inner maximization problem (31) then takes the fol-
lowing form15

max
bt 1nt1 t 1 n̂j1 t 1 g

s
t 1 l

s
t 1 g

l
t 1 l

l
t 1 ĝ

l
t 1 l̂

s
t

{

b
1−�
T

1 −�
−�4x5

}

s.t.

(9)–(15)1
nonnegative constraints on trades (32)1
boundary and initial conditions on the tax

terms (5)–(6)0 (33)

Although (33) appears very similar to (8), there are signif-
icant differences. (8) is a stochastic optimization problem
where the stock price process pt is stochastic, and the deci-
sions 4bt1nt1 t1 n̂j1 t5 are stochastic processes adapted to the
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filtration Ft . In contrast, (33) is a deterministic optimiza-
tion problem corresponding to a single sample path p. Note
that there are K4T + 154T + 25/2 + 7T + 4 variables and
4K+354T +15+3T constraints in this dual inner problem.
Moreover, the constraints in the optimization problem (33)
are quite sparse; only a small subset of the decision vari-
ables appears in each of the constraints, and the objective
function in (33) is separable. Most convex optimization
algorithms, including the MOSEK nonlinear convex opti-
mization solver that we used, can take advantage of these
two properties.

For our 25 stock and 80 time periods example, each dual
problem instance has 83,589 decision variables and 2,508
constraints, and it can be solved in less than 005 seconds.
Given that the dual problem size only grows quadratically
in K and T , we can easily solve dual problem instances
with a much larger number of securities and time periods.
That these dual problems are so easy to solve is very sur-
prising given the reputation of the (primal) tax problem for
being an extremely challenging control problem to solve.

5. Numerical Experiments
We consider an exact cost-basis LUL problem where the
agent can invest in 25 risky securities as well as the cash
account. The investment horizon is 20 years with T =

80 periods corresponding to a quarterly trading frequency.
The U.S. tax code defines short-term gains (losses) to be
those gains (losses) that are realized from selling securities
that have been held for one year or less. All other gains
and losses are long term. We therefore set mst = 3. We
also assume short- and long-term capital gains tax rates of
� s = 40% and � l = 20%, respectively. The agent has power
utility and we consider coefficients of relative risk aversion
� ∈ 810513159.

5.1. Security Price Dynamics

We assume the net annual after tax risk-free interest rate
is 1% so that we set r0 = 10011/4 per period. We assume
the security return dynamics satisfy

ln rt = Âmf
m
t +Âsmbf

smb
t +Âhmlf

hml
t + Åt1 (34)

where rt denotes the return vector over the period 6t−11 t7,
fmt , f smb

t , and fhml
t are the “market,” “small minus big” and

“high minus low” factors over 6t − 11 t7 defined by Fama-
French three-factor model, and Åt are IID multivariate nor-
mal random vectors with mean 0 and covariance è�. We
use the 25 portfolios formed on size and book to market as
described on Ken French’s website as the risky securities in
our model. We obtain the factor loadings Âm, Âsmb, and Âhml

through a linear regression using data from 1988 to 2008
that is also available on his website. We also assume that
the vector of factor returns 4fmt , f smb

t , fhml
t 5 is IID nor-

mally distributed across time periods. Therefore the return
dynamics (34) do not16 have a state vector zt , and so the

solution to the no-tax problem of Appendix A.1 is such
that it is optimal to pursue a myopic trading strategy that
maximizes the expected utility of the next period’s wealth.

5.2. Results

We simulated I = 51000 sample paths and implemented
the three policies described in Section 3 along each sam-
ple path. The dual problem was also solved on the same
5,000 paths. Rather than reporting lower and upper bounds
in terms of expected utilities which are difficult to interpret,
we will instead report bounds as annualized certainty equiv-
alent returns. This is a standard way to report results in
dynamic portfolio optimization problems. Toward this end,
let ū denote the average utility of a feasible policy or the
average of optimal dual objective functions across all sam-
ple paths. The certainty equivalent (CE) annualized return
is then defined as the constant annualized return, rce, that
yields the same average utility. In our power utility frame-
work and with the setting that each period corresponds to
three months this implies 41/41−�554w041+rce5

T /451−�=ū
which yields

rce =

(

441 −�5ū51/41−�5

w0

)4/T

− 10 (35)

We report the mean and 95% confidence intervals (CI)
for rce in our numerical experiments. We used the realized
utility of the no-tax model as a control variate to reduce
the number of Monte Carlo paths that we required for esti-
mating accurate primal and dual bounds. In particular, we
estimate the expected utility ū as

ū =
1
I

I
∑

i=1

(

U
(

bT 4x4p
4i555

)

+�
[

V N
0 4w05−U4w̃T 4x̃4p

4i5555
])

1 (36)

where I is the number of Monte Carlo paths, p4i5 is the
sequence of security price vectors along the ith sample
path, x4p4i55 is the corresponding sequence of trade deci-
sions made by the suboptimal policy or the optimal solu-
tions of the dual problem under consideration, x̃4p4i55 is the
optimal feasible adapted trading policy for the no-tax prob-
lem and V N

0 is the optimal expected utility for the no-tax
problem. We assumed an initial wealth of w0 = 1, but, of
course, the assumption of CRRA utility implies that our
results do not actually depend on w0. Numerical results are
displayed in Table 1.

As expected, we see the tax blind policy performs very
poorly and underperforms the other policies by more than
0.5%–2% per annum. In contrast, the tax-aware and RBH
policies perform very well with the latter outperforming
the former by only 1–6 basis points per annum. The upper
bound provided by the no-tax solution is 20–60 basis points
higher than the best lower bound, i.e., the CE return of the
RBH strategy. The dual upper bound is much better, how-
ever. The gap between the RBH primal bound and the dual
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Table 1. Annualized % certainty equivalent (CE) returns for the three feasible policies together with
the dual and no-tax upper bounds.

Lower bounds Upper bounds

Risk aversion ��� Tax blind Tax aware Rolling buy-and-hold Dual No-tax

1.5 3.25 5.28 5.34 5.44 5.95
�3�24�3�27� �5�28�5�29� �5�33�5�34� �5�44�5�45�

3 2.20 3.18 3.22 3.28 3.54
�2�19�2�22� �3�17�3�18� �3�21�3�22� �3�28�3�28�

5 1.74 2.29 2.30 2.33 2.51
�1�73�1�74� �2�28�2�29� �2�30�2�31� �2�33�2�33�

Note. Corresponding approximate 95% confidence intervals are given in parentheses.

bound varies from 10 basis points when � = 1�5 to just 3
basis points when � = 5. This implies the RBH strategy is
within at most 10 basis points of the optimal solution when
� = 1�5 and 3 basis points when � = 5. For this data set
at least, it seems reasonable to conclude that we have suc-
ceeded in approximately solving the tax-aware asset alloca-
tion problem. Moreover, given the problem features—LUL,
exact cost-basis differential tax rates for short- and long-
term gains, 80 time periods and 25 securities—we would
argue that these numerical results are superior to other
results in the literature.

5.3. Analysis of Risky Asset Holdings

It is of interest to consider the total investment made by
the various trading strategies in the risky securities. Toward
this end, we define the stock to wealth ratio, �

∑t
j=0 p

′
tnj� t�/

�bt +
∑t

j=0 p
′
tnj� t�, to be the percentage of pretax wealth

invested in the risky securities. This ratio is plotted in Fig-
ure 1(a) over the entire investment horizon17 for the various
strategies and levels of risk aversion. The ratio for the no-
tax optimal policy is horizontal as there are no state vari-
ables driving the security returns and so the no-tax optimal
portfolio weights are constant across time. The tax-aware

Figure 1. (Color online) Stock to wealth and trading to wealth ratios as a function of t.
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policy attempts to trade to the no-tax optimal portfolio so
its ratio is very close to that of the no-tax optimal policy.
In contrast, the RBH policy invests more than the no-tax
optimal policy in the risky securities with the exception of
the � = 1�5 case when the ratio for all strategies is 100%.
Not surprisingly, we see that the ratio decreases with risk
aversion for all strategies. We can provide some intuition
for why the RBG strategy invests more in the risky securi-
ties than the tax-aware policy. When the RBH strategy has
unrealized gains, for example, then it can afford to take on
more risk as some of the potential future losses can be used
to offset the taxes that are due on the unrealized gains. This
is clearly not true of the tax-aware heuristic policy because
it simply attempts to trade to the no-tax solution, and there-
fore pays no attention to unrealized gains in determining
its target portfolio.

In Figure 1(b), we plot the trading to wealth ratio, which
we define to be �p′

tnt� t +
∑t−1

j=0 p
′
t�nj� t−1 − nj� t��/�bt−1r0 +

∑t−1
j=0 p

′
tnj� t−1� at time t. We note that the denominator is

the pretrade portfolio wealth at time t while the numerator
is the total dollar trading volume at time t. Several inter-
esting observations can be made. First, for a given level of
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risk aversion we see that the RBH strategy trades a greater
volume than the tax-aware policy, which, in turn, trades a
greater volume than the no-tax optimal policy. This is not
surprising since the RBH policy believes it can trade only
once, i.e., in the current period, before having to liquidate
the portfolio at maturity. The RBH policy is therefore more
reactive to large price movements in any given period as
it will then attempt to rebalance the portfolio (in a tax-
efficient manner) in the belief that it has only one opportu-
nity to do so. The tax-aware heuristic policy sees no such
urgency and perceives little loss in failing to fully rebalance
in any given period. It is also not surprising to see that the
various policies trade more at lower levels of risk aversion.
Finally, we also note that the trading to wealth ratio of the
RBH and tax-aware policies gradually decrease in t.

The values in Figures 1(a) and 1(b) were obtained by
averaging across the I simulated sample paths that were
used to estimate the certainty equivalents of the policies.
There is therefore some statistical noise in these numbers
and this is clearly manifested in the figures.

5.4. Tax Forgiveness in the Final Period

The so-called step-up provision of the U.S. tax code allows
an investor to bequeath assets upon his death and to have
the cost basis of these assets automatically reset to the
fair market value of the assets at the time of death. Given
that most assets will generally have increased in value by
the time of death, this is a considerable18 tax advantage
that essentially resets all capital gains tax rates to zero in
the final period. In this subsection, we therefore rerun our
numerical experiments but with � s = � l = 0 at time T . It
is, of course, (typically) the case that the time of death is
random but for now, it is convenient19 to simply assume
it is fixed and known to occur at time T . The results are
displayed in Table 2.

Several observations are in order. First, and as expected,
all three policies perform better with the step-up provision
in place. The improvement in the tax blind policy is negli-
gible, however, and ranges from only 1–3 basis points per
annum. This is not surprising, however, since the tax blind
policy is unaware of the step-up provision and therefore can

Table 2. Annualized % certainty equivalent (CE) returns for the three feasible policies together with
the dual and no-tax upper bounds.

Lower bounds Upper bounds

Risk aversion 4�5 Tax blind Tax aware Rolling buy-and-hold Dual No-tax

1.5 3.28 5.72 5.92 5.95 5.95
43027130305 45071150725 45091150935 45095150955

3 2.22 3.34 3.49 3.54 3.54
42020120235 43034130355 43048130505 43054130545

5 1.75 2.37 2.46 2.51 2.51
41074110755 42036120375 42045120475 42051120515

Notes. Corresponding approximate 95% confidence intervals are given in parentheses. Step-up provision applies in the final
period.

only take advantage of it in the final period. In contrast, the
RBH policy is aware at all times t of the step-up provision
applying at time T . However, the more risk-averse investors
will not be able to take full advantage of it, as doing so
would require them to hold increasingly unbalanced port-
folios as time T approaches. We therefore see the largest
benefit accrue to the � = 105 investor with increases of 58
basis points per annum for RBH policy.

The upper bounds are perhaps more interesting. The no-
tax upper bound is, of course, unchanged from Table 1.
The dual bound, however, has increased and appears to
be identical to the no-tax upper bound. At least in this
case then, the dual bound provides no information over and
beyond that provided by the no-tax bound. However, this
is not too surprising given that the gap from the best lower
bound to the no-tax bound is already very small, ranging
from just 3 basis points when � = 105–5 basis points when
� = 5. It does raise the interesting question, however, as
to whether it can be shown that dual and no-tax bounds
are identical when the step-up provision is present. This
is not, in fact, the case. While the same results of Brown
and Smith (2011) (that we referred to in Section 4.1) imply
that the dual bound is always at least as good as the no-tax
solution, we observed in our numerical experiments that it
yielded a small improvement over the no-tax bound on a
small subset of dual problem instances. These differences
were small and as they only occurred on a small subset of
dual problem instances, the aggregate difference across all
paths was very small and does not show up in the results
of Table 2 where results are only reported to two decimal
places.

We finally note in passing that the results of Brown and
Haugh (2013) also provide some further insight on this
observation. It is straightforward to show

V N 4x5 ¾ TlulV
N 4x51 (37)

V N 4x5 ¾ TstepV
N 4x50 (38)

where V N is the optimal value function for the no-tax prob-
lem, and Tlul and Tstep are the Bellman operators for the
corresponding LUL problem with and without the step-
up provision in the final period, respectively. Moreover,
standard results from dynamic programming show that any
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approximate value function that satisfies (37) and (38) must
be an upper bound on the true optimal value functions,
for the LUL problem with and without the step-up pro-
vision, respectively. Brown and Haugh (2013) show that
the dual bounds constructed using an approximate value
function that satisfies (37) and (38) are no worse than the
bound provided by the approximate value function itself. In
our context, this result simply states that our dual bounds
must improve on the bound provided by the no-tax solution.
Of course, we already know this using the aforementioned
results from Brown and Smith (2011).

The significance of the Brown and Haugh (2013) treat-
ment is that they provide a lower bound on the improve-
ment of the dual bound over the bound provided by the
approximate value function (which, in our case, is the no-
tax solution V N ). In particular, their results suggest that the
degree of bound improvement will be determined, in part,
by the extent to which the inequalities in (37) and (38) are
slack with less slack resulting in less bound improvement.
While we expect there to be a lot of slack in (37) (and
observe this to be the case in Table 1), there is consider-
ably less slack in (38) and one can easily imagine states x,
where there is essentially no slack. We are therefore not
surprised20 to see that the dual bound in Table 2 is more or
less identical to the no-tax bound.

6. The Average Cost-Basis LUL
Problem Formulation

Under the average cost-basis rule, the cost basis for any
security in the portfolio is defined as the average price at
which the shares of that security in the portfolio were pur-
chased. The advantage of using the average cost basis is
that at any time t, there is only one cost basis per security.
In contrast, under the exact cost-basis approach, it is pos-
sible to have t separate tax bases for each security at each
time t. Consequently, the average cost-basis formulation
results in significantly fewer state variables and is therefore
relatively easier to solve. The average cost-basis approach
is also of considerable practical importance. For example,
investors in U.S. mutual funds can often select an “average
cost, single category” basis or “average cost, double cate-
gory” basis instead of using the exact cost basis. The “aver-
age cost, double category” method requires the calculation
of a separate average cost basis for long- and short-term
holdings. This method is rarely used, however, because it
is more complex to administer. The default approach for
mutual funds is therefore the average cost, single category
method where a single average cost basis is used for all
holdings. In this section, we will consider the primal and
dual versions of the average cost single category method.
Moreover, we will assume a single tax rate that applies to
all gains and losses.

Our goal here is twofold. First, we would like to inves-
tigate how much an investor loses by using the average
cost basis instead of the more flexible exact cost-basis

method. As suggested by DeMiguel and Uppal (2005) and
others, the loss may well be very small and our goal is
to confirm this in a much larger problem setting. Second,
we shall see that dual problem instances for the average
cost basis are nonconcave and are therefore much harder
to solve than dual problem instances for the exact cost-
basis problem. This result is somewhat surprising given that
the primal average cost-basis problem, while still difficult,
is much easier than the primal exact cost-basis problem.
Because of the greater flexibility21 provided by the exact
cost-basis approach, we know the exact cost-basis dual
bound is also an upper bound for the average cost-basis
problem. But it is of independent interest to compare this
upper bound with the average cost-basis dual bound, which
will require the exact solution of nonconcave maximization
problems. We will solve these latter problems using the
polyhedral branch-and-cut approach of Tawarmalani and
Sahinidis (2005). Showing that large nonconcave dual prob-
lem instances can be solved relatively quickly is a further
contribution of this paper and should be of interest in other
application domains where the dual problem instances are
not easy to solve.

6.1. Problem Formulation

Let s+

t1k (resp. s−
t1k) denote the number of shares of secur-

ity k purchased (resp. sold) at time t. Let st1k denote the
number of shares in security k held after trading at time t,
and let p̃t1k denote the associated average cost basis. Let
s+t 2= 6s+

t11 000 s+

t1K7
′, s−t 2= 6s−

t11 000 s−
t1K7

′, st 2= 6st11 000 st1K7
′,

and p̃t 2= 6p̃t11 000 p̃t1K7
′. Using these variables, the LUL tax

code can be simplified since all gains are subject to a single
tax rate � , and therefore there is no need to distinguish short-
and long-term gains. In particular, we define

gt = max8ct + lt−1109 and lt = min8ct + lt−11091 (39)

where ct = 4pt − p̃t−15
′s−t is the net realized proceeds from

sales at time t. Note that (39) allows carried losses to offset
gains and unused losses to be carried forward. We can now
formulate the average cost-basis LUL problem:

max
4bt 1 s

+
t 1 s

−
t 1 st 1 gt 1 lt 1 p̃t1 k5∈Ft 1 t=010001T

Ɛ0

[

b
1−�
T

1 −�

]

(40)

s.t.

st = st−1 + s+t − s−t 1 s0 = s+0 1 t ¾ 11 (41)

b0 +p′

0s0 =w01 (42)

bt +p′

tst + �gt = bt−1r0 +p′

tst−11 t ¾ 11 (43)

gt + lt = 4pt − p̃t−15
′s−t + lt−11 t ¾ 11 (44)

p̃t1 kst1 k = p̃t−11 k4st−11 k − s−

t1 k5+pt1 ks
+

t1 k1 ∀k1 t ¾ 11 (45)

bt ¾ 01 s+t ¾ 01 st−1 ¾ s−t ¾ 01 t ¾ 01 (46)

gt ¾ 01 lt ¶ 01 t ¾ 11 (47)

p̃0 = p01 l0 = 01 (48)

and security price and market state dynamics.
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Note that (41) updates the security positions after trading
at time t, (42) (resp. (43)) is the budget constraint for t = 0
(resp. t > 0), (46) prohibits short sales or borrowing from
the cash account, and (44) and (47) formulate the LUL tax
rule (39). The average cost basis for each security is ini-
tially set to the time t = 0 price and the initial carried losses
are assumed to be 0 in (48). Suppose the agent buys s+

t1 k > 0
shares and sells s−

t1 k > 0 shares of security k at time t. Then,
the net position is st1 k = st−11 k +s+

t1 k −s−
t1 k, and the new cost

basis is p̃t1 k = 4p̃t−11 k4st−11 k−s−
t1 k5+pt1 ks

+

t1 k5/st1 k. This rule
is implemented in (45).

As before, we let xt 2= 6bt s
+
t

′ s−t
′ s′t gt lt p̃

′
t7 denote the

time-t decision variables. Similarly, we let

�0 2=
{

x0 � x0 ∈F0 satisfies constraints (42), (46),
and (48) at t = 0

}

1

�t4xt−11 p̃t−15 2=
{

xt � xt ∈Ft satisfies constraints (41),
(43)–(47)

}

1 t ¾ 11

denote the sets of feasible trades at times t = 0 and t ¾ 1,
respectively.

6.2. Suboptimal Policies

We use suitably adapted versions of the suboptimal policies
of Section 3 for the average cost-basis problem. The Tax
blind policy remains unchanged so that the agent liquidates
her entire portfolio of risky securities at each time t, pays
capital gains taxes on her net gains and then trades to the
no-tax optimal portfolio weights. There is a slight change
in the tax-aware policy because with just a single tax rate,
there are no short-term capital gains taxes to avoid. More
specifically, the agent still follows the five steps described
in Section 3.2, but she simplifies steps (1), (3), and (4) by
harvesting all losses, selling any shares as dictated by the
no-tax solution and paying taxes as necessary, respectively.

It is easy to adapt the RBH strategy to the average cost-
basis problem even though we now have product terms of
decision variables in (44) and (45). The average cost RBH
problem at time t takes the form:

max
xt 1 b

4m5
T 1 g

4m5
T

1
M

M
∑

m=1

4b
4m5
T 51−�

1 −�
(49)

s.t xt ∈�t4xt−11 p̃t−151

b
4m5
T = btr

T−t
0 +p4m5

T

′

st − �g
4m5
T 1 1 ¶m¶M1

g
4m5
T = max84p4m5

T − p̃t5
′st + lt1091

1 ¶m¶M1 (50)

where M denotes the number of time T scenarios used
to approximate the time T uncertainty. The average cost-
basis p̃t−1 is known before trading at time t, and is, there-
fore not, a decision variable here. Hence, (44) that is
included in the constraint xt ∈�t4xt−11 p̃t−15 is a linear con-
straint. The quadratic term p̃′

tst in (50) can be linearized by
replacing it by the right-hand side p̃′

t−14st−1 − s−t 5 + p′
ts

+
t

of (45). Next, applying the smoothing technique introduced
in Section 3.3, we approximate g

4m5
T by

g̃
4m5
T 4xt5 =

1
�

ln
[

exp4�44p4m5
T − p̃t−15

′4st−1 − s−t 5

+4p4m5
T −pt5

′s+t + lt55+ 1
]

0 (51)

With these modifications, (49) can be approximated as
follows:

max
xt∈�t4xt−11 p̃t−15

1
M41−�5

·

M
∑

m=1

(

btr
T−t
0 +p4m5

T

′

4st−1 +s+t −s−t 5−�g̃
4m5
T 4xt5

)1−�
0 (52)

This problem has a total of 2K+3 variables: bt , s
+
t , s−t , gt ,

and lt . Note that the number of decision variables in (52)
does not increase with t, and is considerably fewer than that
in the exact cost-basis problem (27). Furthermore, ignor-
ing nonnegativity constraints, there are only two remaining
constraints, namely, (43) and (44). In our numerical experi-
ments, we found the average cost-basis RBH problem could
be solved approximately three times as quickly as the cor-
responding exact cost-basis RBH problem.

6.3. Dual Bound

Following Proposition 1 in Appendix A.1, we know the
value function of the no-tax problem is a valid upper bound
for the average cost-basis LUL problem (40). However, this
bound is likely to be too conservative as we saw in the exact
cost-basis case of Section 5. While the exact cost-basis dual
bound is a valid upper bound for the average cost-basis
problem (and possibly a very good one), we would still like
to consider the dual problem instances corresponding to the
average cost-basis problem. These dual problem instances
take the form

max
x

{

b
1−�
T

1 −�
−�4x5

}

s.t. constraints (41)–(48)1 (53)

where the sample path of prices p is known, and the aver-
age cost-basis p̃t1 k, trades s−

t1 k and st1 k, are all decision
variables. Thus (44) and (45) are now nonconvex quadratic
constraints, and the inner optimization problem that we
need to solve to compute the average cost upper bound is
no longer concave. Recall that we need22 to compute the
global optimum of this dual optimization problem to obtain
a valid dual bound. Since it is hard, in general, to solve
a nonconcave maximization problem, tackling (53) directly
does not lead to an efficient strategy for computing prov-
ably valid dual bounds.

We have a valid dual bound for the average cost-basis
LUL problem as long as we can upper bound (53) along
each dual sample path. Suppose then that we simulate I dual
sample paths and let V 4i5

up be the optimal solution of the dual
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problem (53) on the ith path. Let Io ⊆ I be those dual paths
on which we can compute V 4i5

up , and let Iu 2= I − Io be the
paths on which we can only obtain an upper bound, V̄ 4i5

up ,
for V 4i5

up . Since

1
I

I
∑

i=1

V 4i5
up ¶ 1

I

(

∑

i∈Io

V 4i5
up +

∑

i∈Iu

V̄ 4i5
up

)

1 (54)

the right-hand side of (54) is still a valid dual bound.
Our approach, outlined below, produces such a bound.
Moreover, we shall see that the quality of this bound
remains very good because, at least in our numerical exper-
iments, V̄ 4i5

up is very close to V 4i5
up for the paths in Iu.

6.3.1. Solving with BARON. Tawarmalani and Sahini-
dis (2005) proposed a polyhedral branch-and-cut approach
to perform global optimization for nonconvex optimiza-
tion problems. Their algorithm generated polyhedral cutting
planes and relaxations for multivariate nonconvex prob-
lems, and their algorithm was implemented in the BARON
solver (Sahinidis 2013).

Explicitly imposing tight lower and upper bounds for
decision variables can significantly improve the efficiency
of the BARON solver. We can take advantage of this as fol-
lows. First, recall that rt denotes the time t return vector
and that rt , for t = 11 0 0 0 1 T , is known on each dual sample
path. If the agent starts with an initial wealth of w0, then it
is clear that

w̄t =w0

t
∏

j=1

max4r01 rj5 (55)

provides an upper bound on the time t wealth of the agent,
where the max operator in (55) returns the maximum of r0

and all elements in the return vector rj . We also note that
the average cost basis for each security at time t must lie
between the lowest and highest prices of that security along
the sample path up to time t. Given these two observations,

Table 3. Annualized % certainty equivalent (CE) returns for the three feasible policies together with the dual and no-tax
upper bounds.

Lower bounds Upper bounds

Risk aversion 4�5 Cost basis Tax blind Tax aware Rolling buy-and-hold Dual No-tax

1.5 Exact 3.17 4.27 4.32 4.61 5.95
43015130205 44026140285 44028140325 44060140635

Average 3.17 4.27 4.31 4.62
43015130205 44026140285 44028140325 44060140635

3 Exact 2.07 2.64 2.70 2.82 3.54
42008120085 42063120655 42068120725 42081120835

Average 2.07 2.64 2.69 2.82
42008120085 42063120655 42067120715 42080120835

5 Exact 1.66 1.97 2.02 2.08 2.51
41065110665 41097110985 42068120725 42007120085

Average 1.66 1.97 2.01 2.08
41065110665 41097110985 42067120715 42007120085

Note. Corresponding approximate 95% confidence intervals are given in parentheses.

we can impose the following additional constraints for the
decision variables along each dual sample path:

s+t ¶ w̄t/pt1 s−t ¶ w̄t/pt1 st¶ w̄t/pt1 gt¶ w̄t1

−w̄t−1¶ lt1 min4p010001pt5¶ p̃t¶max4p010001pt50 (56)

We found that imposing these constraints resulted in a sig-
nificant speedup of the BARON solver and allowed us to solve
reasonably large average cost dual problem instances.

6.4. Numerical Experiments

In our numerical experiments, we used the security price
dynamics as described in Section 5. We assumed a single
tax rate of � = 30% and we assumed a total of 20 time peri-
ods. We restricted ourselves to 20 periods since solving the
nonconcave dual problem instances with BARON was quite
time consuming even after imposing the additional bounds
on the variables. We implemented each of the three subop-
timal policies along each simulated path and also solved the
dual problem using the average cost basis and BARON. The
results are shown in Table 3 together with results for the
corresponding23 exact cost-basis problem. We set the solv-
ing time limit for each dual path to be one minute and we
used 2,000 paths in our numerical experiments. The global
optimum on approximately 40% of these paths was found
with a relative error of 10−6 within one minute. For the
remaining 60% of the paths, we used the best upper bound
that was returned by BARON when it stopped after reaching
the one-minute cutoff.

There are two main observations to be made from
Table 3. First, we note that the lower bound for the exact
cost-basis and average cost-basis problems are almost iden-
tical. The only difference between the two (when CE re-
turns are reported to two decimal places) is that the RBH
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policy for the average cost-basis problem has a CE return
that is one basis point lower than the RBH policy for the
exact cost-basis problem. This is consistent with the obser-
vation of DeMiguel and Uppal (2005) who noted (in the
one or two stock case) that the CE loss in wealth was small
when using the average cost basis instead of the exact cost
basis. Second, we note that the dual bounds24 for the aver-
age cost-basis problems are also almost identical to the dual
bounds of the corresponding exact cost-basis problems. The
only noticeable difference is a one basis point difference
when � = 105.

We can draw three conclusions from these results. First,
when solving tax-aware asset allocation problems with a
single tax rate, there appears to be essentially no loss in
restricting ourselves to the use of the average cost basis.
Moreover, one can easily compute tight and valid upper
bounds for the average cost-basis problem by using the cor-
responding exact cost-basis dual bounds, which are easy to
compute. Second, the polyhedral branch-and-cut approach
of Tawarmalani and Sahinidis (2005) can be employed suc-
cessfully to obtain good dual bounds even when the dual
inner problems are nonconcave, and are therefore difficult
to solve. This is particularly the case when path-specific
bounds on the variables are added to the problem formu-
lation. We believe this approach may be useful in other
application domains.

Finally, we note that the duality gaps in Table 3 are sig-
nificantly wider than the corresponding gaps in Table 1. In
particular, the gap25 between the best primal policy, i.e.,
the RBH policy, and the dual bound ranges from approxi-
mately 29 basis points when � = 105–6 basis points when
� = 5. The main explanation for this is that we used a sin-
gle tax rate of � = 30% here so that all gains are taxed at
this rate in Table 3. In contrast, the tax aware and (presum-
ably) the RBH strategies always avoid short-term gains in
the numerical results of Table 1, and therefore only paid
taxes at the long-term rate of 20% there. This suggests that
the no-tax solution is actually closer to the optimal solu-
tion (and therefore yields a better dual penalty) in Table 1
than in Table 3. This is not the complete story, however,
as we can see by comparing the performance of the tax
blind strategy in Tables 1 and 3. The tax blind strategy of
Table 1 always pays taxes at a rate of 40% and yet still
outperforms the tax blind strategy of Table 3 where the tax
rate is smaller at 30%. This can be explained, in part, by
the fact that the time horizon of 20 periods that we used
here is considerably smaller than the 80 periods we used in
Table 1. The shorter horizon allows less opportunity to use
capital losses that have been carried forward. Moreover, the
values of � that we used here are not exactly comparable26

to the corresponding values we used in Section 5 because
of this difference in time horizons.

7. Conclusions and Further Research
In this paper, we have considered the challenging problem
of tax-aware dynamic asset allocation. We have developed

suboptimal and heuristic trading policies for the exact and
average cost-basis LUL problems and constructed tight
lower and upper bounds on the annualized certainty equiv-
alent returns of these policies. It is clear that similar poli-
cies can also be constructed for other variations of these tax
problems. Our principal contribution has been to demon-
strate that much larger problems than previously considered
can now be tackled through the use of sophisticated opti-
mization techniques and duality methods based on informa-
tion relaxations. Specifically, the dual formulations of exact
cost-basis problems are much easier to solve than the cor-
responding primal problems and it is quite straightforward
to solve dual problems with a realistic, i.e., large, number
of securities and time periods. To the best of our knowl-
edge, we are also the first to successfully use these duality
methods for tax-aware asset allocation. We also consider the
relatively easier average cost-basis problem in this paper but
note that dual problem instances in this case are nonconvex.
We propose solution approaches for these problem instances
so that we can still obtain valid upper bounds. These solu-
tion approaches should be useful in other applications where
the dual problem instances can be nonconvex.

There are several possible directions for future research.
One direction is to improve our understanding of the
(approximately) optimal trading policies for these prob-
lems. In particular, when do these policies trade and is there
an easy to characterize no-trade zone? How do the answers
to these questions depend on the particular version of the
tax problem that we are addressing? A second direction is
to apply the dual methodology to other tax-related prob-
lems such as tax-aware index tracking. One issue that then
arises is the need to find good dual penalties. In this paper,
we found that the no-tax optimal solution yielded a good
dual penalty for the tax-aware asset allocation problem but
an alternative penalty would need to be found for the tax-
aware index tracking problem. It may also be the case that
the no-tax solution does not yield sufficiently good dual
penalties for some of the extensions outlined in the online
appendix. In that case, we would again need to construct
and evaluate better penalties. We are currently working on
some of these problems.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2016.1517.
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Appendix A.

A.1. The No-Tax Problem Formulation
In the no-tax problem, capital gains are not taxed so that � s = 0
and � l = 0 for t = 011 0 0 0 1 T . The portfolio optimization problem
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can then be solved using dynamic programming (DP) as long
as the dimension of the exogenous state vector zt is sufficiently
small.

Let V N
t 4wt , zt5 denote the time-t optimal value function for the

no-tax problem. Although the current wealth wt is a state variable,
it is well known that wealth can be factored out when the utility
function belongs to the CRRA class as is the case in this paper.
This means we can write

V N
t 4wt1 zt5=

1
1 −�

w1−�
t �t4zt51 (57)

where �t4zt5 is recursively defined with �T 4zT 5= 1,

1
1 −�

�t4zt5

= max
b̃t 1 ñt

Ɛt

[

1
1 −�

4b̃tr0 + r′

t+1ñt5
1−��t+14zt+15

]

(58)

s.t. b̃t + 1′ñt = 11 (59)

b̃t ¾ 01 ñt ¾ 01 (60)

and b̃t and ñt denote the posttrade fractions of wealth wt invested
in the cash account and risky securities, respectively. The time t
conditional expectation in (58) is taken over the next period’s
return vector rt+1 and the state vector zt+1. The budget constraint
is given by (59), and (60) are the no borrowing and no short sales
constraints, respectively. In this case, the dimension of the state
space is equal to the dimension of the state vector zt , and so we
can solve the no-tax optimal portfolio position 4b̃∗

t 1 ñ
∗
t 5, which are

the optimal solution of (58) and V N
t numerically over a fine grid

of possible values of zt if the dimension of zt is sufficiently small.
We can then derive heuristic trading policies for the tax problem
based on 4b̃∗

t 1 ñ
∗
t 5, and also use V N

t as a basis for constructing
dual feasible penalties as described in Appendix A.3 below.

The following proposition compares the set of feasible policies
for the exact or average cost-basis LUL problem to those for the
no-tax problem. Note that the result in Proposition 1 does not
hold, in general, for FUL problems.

Proposition 1. The set of feasible policies for the exact or aver-
age cost-basis LUL problem is a subset of the set of feasible
policies for the no-tax problem. Therefore V N

t ¾ V LUL
t .

Proof. Suppose taxes in the LUL problem are not paid to the tax
authority; instead, they are invested in a special risk-free security
that also earns the same risk-free rate r0. The proceeds of this
investment are returned to the agent at maturity T . In this case,
we see that any feasible policy for this adjusted (exact or average
cost-basis) LUL problem is also feasible for the no-tax problem.
In particular, the optimal value function for this adjusted prob-
lem V

LUL1 adj
t satisfies V

LUL1 adj
t ¶ V N

t . But we clearly have V LUL
t ¶

V
LUL1 adj
t and so the result follows. �

While an obvious result, the significance of Proposition 1 is that
it guarantees dual bounds constructed using the no-tax optimal
solution that will be at least as good as the no-tax bound itself.
This follows from the results in Brown and Smith (2011). See
Appendix A.3 for an additional discussion on this observation.

A.2. Further Details on the Tax-Aware Policy
We provide some brief examples here that illustrate the workings
of the tax-aware policy for the case where there is a single risky
security. Suppose after harvesting losses, the agent has ls = $50

of realized short-term losses and ll = $100 of realized long-term
losses available to her. There is just a single risky stock and its
current price is $10. The agent has 100 long-term shares with
cost-basis $8 and 100 short-term shares with cost-basis $9. We
assume the long-term tax rate is 20%.

Case 1. Suppose now she wants to sell 40 shares of the stock (to
achieve the optimal portfolio weights of the no-tax problem). She
will sell 40 long-term shares and realize 410 − 85× 40 = $80 of
long-term gains. The agent will use $80 of her realized long-term
losses to offset these gains. The net long-term gains are therefore
$80 − $80 = $0, she does not pay any taxes in this period and
she carries the remaining $50 of short-term losses and $20 of
long-term losses forward to the next period.

Case 2. She wants to sell 80 shares. She will sell 80 long-term
shares and realize 410 − 85× 80 = $160 of long-term gains. The
agent will first use $100 of her realized long-term losses and then
$50 of her realized short-term losses to offset these gains. The
net long-term gains are then 160 − 100 − 50 = $10, and the agent
pays long-term capital gains taxes of $10 × 002 = $2. No losses
are carried forward.

Case 3. She wants to sell 120 shares. She will first sell all 100
long-term shares and realize 410 − 85 × 100 = $200 of long-
term gains. She will use $100 of her realized long-term losses
as an offset after which the remaining long-term gains are 200 −

100 = $100. She then sells 20 short-term shares, which real-
ize 410 − 95 × 20 = $20 of short-term gains which she offsets
with $20 of her realized short-term losses. She still has $30 of
excess short-term losses, however, so she will use them to offset
some of her remaining long-term gains. This leaves her with net
long-term gains of 100 − 30 = $70. She pays long-term capital
gains taxes of 70 × 002 = $14 and no losses are carried forward
to the next period.

Case 4. She wants to sell 180 shares. She will first sell all 100
long-term shares and realize 410 − 85 × 100 = $200 of long-
term gains. She will use $100 of her realized long-term losses
as an offset after which the remaining long-term gains are 200 −

100 = $100. She would like to sell an additional 80 shares but,
in fact, she will only sell 50 short-term shares. This sale realize
410 − 95×50 = $50 of short-term gains, which are offset entirely
by her $50 of realized short-term losses. The agent then pays
long-term capital gains taxes of 100 × 002 = $20 and no losses
are carried forward. She did not succeed in selling 180 shares
because of the principle to avoid paying short-term capital gains
taxes at all times.

A.3. Constructing Dual Feasible Penalties

For the exact and average cost-basis LUL problems, we consider
a gradient penalty of the form originally proposed by Brown and
Smith (2011). Recall that we use XL to denote the set of feasi-
ble adapted policies for the exact cost-basis LUL problem. We
also let XN denote the set of feasible adapted policies for the
no-tax problem. Given a sample path of security prices p and
market states z, let x̃∗4p1 z5 denote the optimal feasible adapted
trading policy for the no-tax problem, and let w̃T 4x̃

∗4p1 z55 denote
the corresponding terminal wealth that results from following this
policy. We define our gradient penalty as follows:

�4x5 2= ïxU4w̃T 4x̃
∗4p1 z555′4x− x̃∗4p1 z551 (61)
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where ïxU4w̃T 4x55 denotes the gradient of the terminal utility
with respect to x. Note that �4x5 is clearly linear in the decision
vector x. Since we can view the no-tax problem of (57) as a
static convex optimization problem over the trading policy x, the
first-order conditions imply that

Ɛ
[

ïxU4w̃T 4x̃
∗4p1 z555′4x− x̃∗4p1 z55

]

¶ 0 (62)

for any feasible adapted trading policy x ∈XN . By Proposition 1,
it follows that XL ⊆ XN so that (62) also holds for all x ∈ XL.
It now follows easily from a similar argument to the discussion
preceding Proposition 4.2 in Brown and Smith (2011) that the
gradient penalty (61) is dual feasible for the exact cost-basis LUL
problem and that the resulting dual bound is guaranteed to be no
worse than the bound provided by the no-tax solution.

It is also worth mentioning that more recently, Brown and
Smith (2014) identified an alternative gradient penalty that is
related to (61). This penalty explicitly includes Lagrange multi-
plier terms for constraints, e.g., no short sales constraints, that
are binding in the relaxed27 problem. They show that this related
penalty is superior to (61) for concave dynamic programs in the
sense that the resulting dual bound is guaranteed to be at least
as good as the dual bounds obtained from using (61). If the con-
straints are never binding, however, then the two penalties are
identical, and therefore result in the same dual bound. Given the
agent’s risk aversion, we found the no short sales and no borrow-
ing constraints for the no-tax problem to be rarely if ever binding
in our calibrated Fama–French model. For that reason, we con-
tinued to use the penalty in (61) rather than the new gradient
penalty proposed by Brown and Smith (2014). It is clear from the
numerical experiments in Section 5 that this penalty performed
extremely well and we would expect no discernible improvement
had we used the alternative gradient penalty.

While the above discussion refers to the exact cost-basis LUL
problem, we note that Proposition 1 also applies to the average
cost-basis LUL problem and that the penalty of (61) is also dual
feasible for this problem.

A.4. Further Details on Solving the Rolling Buy-and-Hold
Problems

Generating LDS Scenarios. At each time period t, we gen-
erate M = 101000 scenarios of time T security prices. Assuming
the dynamics specified in (34), the distribution of pT conditional
on the information available at time t is available in closed form.
We can therefore generate time T scenarios directly, i.e., in a sin-
gle step, rather than having to simulate scenarios at intermediate
time points using (34).

We used low discrepancy sequences (LDS) (Glasserman 2004)
instead of naive Monte Carlo since LDS fill the “unit cube” more
uniformly and often result in a dramatic improvement in perfor-
mance. In our numerical experiments, we used a K-dimensional
Sobol sequence to generate samples of the time T risky security
prices. We produced these LDS using Matlab’s LDS functional-
ity. We rejected the first 1,000 points, retained every 101-st point
thereafter, and also applied the so-called Matousek-Affine-Owen
scrambling scheme.

The SQP Algorithm. Let ft4xt5 denote the objective func-
tion in (27). We solve it using the following sequential quadratic
programming (SQP) approach:

1. Choose a starting point, x̄t= 6b̄t n̄
′
01 t 0 0 0 n̄

′
t1 t ḡ

s
t l̄

s
t ḡ

l
t l̄

l
t

¯̂gst
¯̂
lst 7.

2. Approximate ft4xt5 with a second-order Taylor expansion
f̄t4xt5 about x̄t , and solve

max
xt

f̄t4xt5 2= ft4x̄t5+ïft4x̄t5
′4xt − x̄t5

+
1
2 4xt − x̄t5

′ï 2ft4x̄t54xt − x̄t5

s.t. xt ∈�t4xt−11p02 t51

(63)

where ïft4x̄t5 and ï 2ft4x̄t5 are the gradient vector and Hessian
matrix of ft , respectively, evaluated at x̄t . Recall that we have
analytical expressions for ïft4x̄t5 and ï 2ft4x̄t5. Let xopt

t be the
optimal solution to (63).

3. Evaluate the objective function ft at xopt
t , and stop if we

have converged to within a given error tolerance. Otherwise, set
x̄t = xopt

t and return to Step 2.
We used an absolute error tolerance of 10−5 in our SQP algo-

rithm. Depending on the level of risk aversion, �, this corresponds
to a relative error tolerance between 10−5 and 10−6.

A.5. Exact Cost-Basis Problem Formulation for the
Single Tax Rate Case

The exact cost-basis asset allocation problem for the case of just
a single tax rate can be formulated as

max
4bt 1nj1 t 1gt 1 lt 5∈Ft 1 t=010001T

Ɛ0

[

b
1−�
T

1−�

]

(64)

s.t.

b0 +p′

0n010 =w01 (65)

bt +
t
∑

j=0

p′

tnj1 t +�gt =bt−1r0 +

t−1
∑

j=0

p′

tnj1 t−11 t¾11 (66)

nt1 t¾01 t¾01 (67)

nj1 t−1¾nj1 t¾01 t¾11j <t1 (68)

bt¾01 t¾01 (69)

gt +lt =
t−1
∑

j=0

4pt −pj5
′4nj1 t−1 −nj1 t5+lt−11 t¾11 (70)

gt¾01 t¾11 (71)

lt¶01 l0 =01 t¾11 (72)

and security price and state variable dynamics, where gt denotes
taxable capital gains after trading at time t and lt represents the
accumulated unused losses, which will be carried forward. It is
easy to see that (64)–(72) are a reduced form of the constraints
in Section 2 that we obtain by adding short- and long-term gains
together and applying a single tax rate � .

Endnotes

1. This strategy is sometimes referred to as “shorting the box.”
The 1997 Tax Reform Act in the U.S. rules out “shorting the box”
transactions.
2. We note that their algorithm required 90 hours with 100 CPUs
working in parallel to solve the problem. They do not provide
processor or software details.
3. In the current U.S. tax code, it is also possible to use excess
long-term losses to offset short-term gains that remain after off-
setting by short-term losses. We do not model that feature here
but we do briefly discuss how it could be modeled in Appendix B.
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4. We use the “hat” notation here to denote intermediate quanti-
ties in our calculations. For example, l̂st , will be further adjusted
to obtain a final value of the short-term losses lst carried forward
after trading at time t.
5. As mentioned earlier, this is consistent with the current U.S.
tax code. We also show in an online appendix how excess long-
term losses can be used to offset short-term gains. Indeed, the
argument we used above to linearize (4) does not hold when
excess long-term losses can be used to offset excess short-term
gains.
6. While typically ruled out in practice, it is common in the lit-
erature to allow wash sales. This is advantageous for a portfolio
with embedded capital losses because the wash sales transaction
realizes the capital losses so they are immediately available for
offsetting any realized gains. In the online appendix, we discuss
how wash sales constraints can be imposed.
7. If the agent is able to realize all her desired sales to reach the
target dollar position in Step (3) and pay no-taxes by offsetting all
gains in Step (4), then she can purchase any needed securities to
arrive at the no-tax optimal portfolio weights 4b̃∗

t 1ñ
∗
t 5 in Step (5).

8. Obviously, other similar heuristics are possible. For example,
rather than selling shares in proportion to their long-term (or
short-term) holdings, we could adopt a first in-first out heuristic
or a heuristic, which sells shares with the highest cost basis first.
9. In our numerical experiments of Section 5, we consider a
problem with 80 periods corresponding to quarterly investing for
20 years. Modeling the U.S. tax code, we therefore take mst =3.
10. Further details are provided in the appendix.
11. When we count the number of constraints here and in the
later part of the paper, we exclude the nonnegativity constraints
on the variables since these constraints have little impact on the
solution time.
12. When � is rational, (22) can, in fact, be reformulated as a
second-order cone program (Alizadeh and Goldfarb 2003).
13. The computations were done with Matlab using the convex
nonlinear optimization in MOSEK on a Windows 7 computer with
3.40 GHz Intel i7-4770 4 cores CPU and 8 GB of RAM. We used
this computer for all computations reported in this paper.
14. Calculations are done with MOSEK’s QP solver called from
Matlab.
15. In problem (33), we also need to do variable substitution
n̂j1t =nj1t−1 −nj1t for constraints (10)–(12). We do not write them
explicitly here to save space.
16. In unreported numerical results, we also allowed two of the
factors to follow AR(1) dynamics. The resulting predictability (in
the form of a two-dimensional state vector zt) from fitting this
model was very modest, however, and made almost no difference
to our numerical results despite the significantly increased com-
putational cost of solving the no-tax problem.
17. We omitted the final time period T as all risky security hold-
ings must be liquidated at that point.
18. This provision is also somewhat controversial with regular
calls to have it removed from the U.S. tax code. It is perhaps
also worth mentioning that there is also a step-down provision,
whereby assets that have decreased in value at the time of death
also have their cost basis reset to the current market value. These
provisions therefore provide incentives for holding appreciated
assets until after death and selling depreciated assets before death.
19. We show in Appendix B that random time horizons can be
easily handled.

20. It is worth mentioning that the results in Brown and Haugh
(2013) apply to dual bounds constructed using approximate value
functions rather than the gradient-based penalties we used and
discussed in Appendix A.3. Their results were derived in the con-
text of infinite-horizon problems but these problems do include
the class of finite-horizon problems as a special case.
21. Indeed, we can view average cost-basis strategies as a strict
subset of exact cost-basis strategies.
22. Unless we choose to use the exact cost-basis upper bound,
which, as previously mentioned, is a valid upper bound for the
average cost-basis problem.
23. The exact cost-basis problem for the case of a single tax rate
is formulated in Appendix A.5.
24. The dual penalty �4x5 for the average cost-basis problem was
constructed using the same gradient penalty that we used for the
the exact cost-basis problem.
25. If we assume the true optimal solution lies at the midpoint
of the duality gap, then we are only 15 and 3 basis points from
optimality when �=105 and 5, respectively. We would therefore
argue that the RBH strategy in Table 3 is still close to the optimal
solution.
26. To make them exactly comparable, we should have adjusted
them by the appropriate deterministic discount factor.
27. The relaxed problem in this paper is the no-tax problem, and
the only constraints we imposed there are no short sales and no
borrowing constraints.
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