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a b s t r a c t

We consider constant proportion (CP) trading strategies when there are multiple underlying securities
and use a recently derived expression for the terminal wealth of a CP strategy to address two issues. First,
we characterize the performance of a CP strategy relative to the performance of the corresponding buy-
and-hold strategy. We then explain the performance of leveraged ETFs which have been criticized for not
performing as expected, particularly during the financial crisis of 2008.
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1. Introduction

A constant proportion (CP) trading strategy is a strategy inwhich
the fraction of wealth invested in each risky asset is constant and
does not vary with time. These strategies are often referred to as
static strategies in the literature but we will persist with referring
to themasCP strategies in this paper. CP strategies require constant
rebalancing and are therefore dynamic in nature. Moreover they
are perhaps themost well known of all dynamic trading strategies.
They appear as the optimal solution to the classic dynamic portfolio
choice problem in which the investment opportunity set does
not vary with time and the investor has constant relative risk
aversion, i.e. a power or logarithmic utility function over terminal
wealth and/or intermediate consumption. These problems were
first studied and solved by Merton [24,25], Samuelson [27] and
Hakansson [14]. Moreover, the optimality of these strategies is
derived in just about every advanced financial economics textbook
that discusses dynamic portfolio optimization. See Duffie [11],
Merton [26] or Cvitanic and Zapatero [10], for example, or Karatzas
and Shreve [17] for a more recent treatment of the optimality
of constant proportion trading strategies. Browne [6] studies the
rate of return on investment for CP strategies when the underlying
securities follow geometric Brownian motions and lists several
other problems for which CP strategies are optimal. They include,
for example, the problem of minimizing the expected time to
reach a given level of wealth and the problem of maximizing the
expected discounted reward for reaching a given level of wealth.

CP strategies, of course, are also synonymous with the Kelly
criterion [18] for optimizing the long-term growth rate of wealth.
Other works related to the Kelly criterion include, for example,
[4,28,13,12,8,9].

✩ The first version of this paperwas called ‘‘ANote onConstant Proportion Trading
Strategies and Leveraged ETFs’’.
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It is remarkable, however, that despite the ubiquity of CP
strategies, until very recently we could not find an expression
in the literature for the terminal wealth of a CP trading strategy
in terms of the terminal security prices. In this note, we use
the expression for the terminal wealth of a CP strategy that was
recently derived by Haugh and Jain [15] for two purposes.

The first is to compare the performance of a CP strategy with
the performance of the corresponding buy-and-hold strategy. Our
main result here is that when no-short sales and no-borrowing
constraints are imposed, the exposure of the CP strategy to realized
variances and covariances can be interpreted as a (multiplicative)
premiumpaid to the follower of the CP strategy for accepting a final
wealth that is proportional to the geometric mean of the terminal
security prices rather than the arithmeticmean. This result follows
froma simple application of the geometric-mean inequality butwe
have not seen it elsewhere in the literature.

The second purpose is to explain the recent and controversial
performance of leveraged ETFs (LETFs). Unlike regular ETFs which
are passively managed, LETFs require active management. They
have the stated goal of replicating some multiple of the daily
performance of some underlying security or index. This multiple is
greater than one for a positively leveraged ETF and less than zero
for an inverse ETF. Typical leverage values are ±2 and ±3. Many
investors who invested in these securities expected returns that
would be very similar to the returns of a buy-and-hold investment
in the same underlying security at the same leverage multiple.
During the highly volatile period of the 2008 credit crisis this was
not the case and so LETFs received much attention and criticism
from the financial press.

We are certainly not the first to explain LETF performance.
Indeed Avellaneda and Zhang [1] and Cheng and Madhavan [7]
both derived (18) by arguing from first principles. (Cheng and
Madhavan [7] derived (18) assuming geometric Brownian motion
dynamics.) In this paper, we obtain (18) as a particular case of
the more general expression derived by Haugh and Jain [15].
In fact, we argue that given an understanding of CP trading
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strategies, there should have been no surprise whatsoever when
LETFs performed as they did during the financial crisis of 2008.
Indeed the sensitivity of the performance of a CP trading strategy
to realized variance does not appear to be widely known or at the
very least, widely appreciated. This is remarkable, given the central
role they played in the early development of dynamic portfolio
optimization and their association with the Kelly criterion. This
lack of appreciation is most likely explained by the fact that just
about every treatment of CP strategies in the literature neglects
to write the terminal wealth as a function of the terminal values
of the underlying securities. Instead these treatments often end
once they have demonstrated the optimality of a CP strategy and
on some occasions, derived the optimal value function.

In this note, we write the terminal wealth of a CP trading
strategy as a function of the terminal security prices and see
that it immediately explains LETF performance when specialized
to the case of just one underlying security. Moreover, we can
use this expression to interpret the exposure of a CP strategy to
realized variances and covariances as the cost or compensation for
following a CP strategy as opposed to a buy-and-hold strategy. As
stated above, when no short sales and no-borrowing constraints
are imposed, we can interpret this exposure as a compensation.
In the case of LETFs, it is a cost. We also propose a constant
proportion ETF (CPETF) that requires neither borrowing nor short
selling and argue that such a security would be more appealing to
unsophisticated investors aswell as having some positive systemic
effects on market microstructure. In particular, the rebalancing
requirements of a CPETF would require the manager to sell at the
close after an up-day and to buy at the close after a down-day,
thereby dampening volatility at the close.

The remainder of this note is organized as follows. In Section 2,
we introduce our model for the security price dynamics and then
derive the expression of Haugh and Jain [15] for the terminal
wealth that results from following a CP strategy. After briefly
mentioning some other applications of this expression we move
to Section 3 where we compare the performance of a CP strategy
with the performance of the corresponding buy-and-hold strategy.
In Section 4, we use Eq. (18) to explain the performance of LETFs
during the financial crisis of 2008.While not the first to derive (18),
we do demonstrate that it follows immediately from the earlier
work of Haugh and Jain [15].

2. Security price and wealth dynamics

We assume that there are n risky assets and a single risk-
free asset available in the economy. The time t vector of risky
asset prices is denoted by Pt = (P (1)

t . . . P (n)
t )⊤ and the time t

continuously compounded risk-free rate of return is denoted by rt .
We assume the price dynamics of the risky assets satisfy

dPt
Pt

= µtdt + ΣtdBt (1)

where dPt/Pt should be interpreted component-wise, Bt is an m-
dimensional standard Brownian motion, µt is an n-dimensional
adapted process and Σt is an n × m adapted matrix process. Note
that while the dynamics in (1) do not allow for jumps, they are
otherwise quite general. We could, for example, include additional
dynamics for some state variables, Xt say, that drive µt and Σt .
Such an assumption would not change any of our analysis and so
we do not bother to explicitly specify any state variable dynamics.

Consider now an investor who follows a CP trading strategy,
θ = (θ1 . . . θn)

⊤, so that at any time t , the fraction of wealth
invested in the ith risky asset is constant and equal to θi. The
fraction invested in the cash account is then given by 1 −

∑n
i=1 θi.

The value of the portfolio,Wt , then has the following dynamics

dWt

Wt
= [(1 − θ T1)r + θ Tµt ]dt + θ TΣtdBt . (2)
2.1. The terminal wealth of a constant proportion trading strategy

We have the following proposition which solves for the
terminal wealth corresponding to any CP trading strategy when
the price dynamics satisfy (1). In particular, we solve the SDE in
(2). This result was originally obtained by Haugh and Jain [15] who
used it to study the dual approach for portfolio evaluation that was
proposed by Haugh et al. [16]. To be precise, Haugh and Jain [15]
assumed that the volatility matrix in (1) was constant but it was
clear that their derivation also worked for an adapted volatility
matrix process.

Proposition 1. Suppose price dynamics satisfy (1) and that a static
trading strategy is employed so that at each time t ∈ [0, T ] a pro-
portion, θi, of time t wealth is invested in the ith risky security for
i = 1, . . . , n with 1 − θ⊤1 invested in the risk-free asset. Then the
terminal wealth, WT , resulting from this strategy satisfies

WT = W0 exp
∫ T

0

[
(1 − θ⊤1)rt

+
1
2
θ⊤(diag(ΣtΣ

⊤

t ) − ΣtΣ
⊤

t θ)

]
dt
 n∏

i=1


P (i)
T

P (i)
0

θi

. (3)

Proof. Using (1) and applying Itô’s lemma to ln PT we obtain

ln PT = ln P0 +

∫ T

0


µt −

1
2
diag(ΣtΣ

⊤

t )


dt +

∫ T

0
ΣtdBt . (4)

As the wealth dynamics satisfy (2) another simple application of
Itô’s lemma to lnWT then implies

WT = W0 exp
∫ T

0

[
(1 − θ⊤1)rt + θ⊤µt −

1
2
θ⊤ΣtΣ

⊤

t θ

]
dt

+ θ⊤

∫ T

0
ΣtdBt


. (5)

Substituting (4) into (5) we then obtain (3) as desired. �

It is worth mentioning again that Proposition 1 is no longer valid
if we allow jumps in the security price dynamics. Nonetheless,
it is straightforward to show that the proposition would hold
approximately in the presence of jumps and we will return to this
issue in Section 4.1. Before discussing our main applications of
Proposition 1 in Sections 3 and 4,wewill briefly discuss some other
applications of the proposition.

2.2. Merton’s problem

Consider the classic dynamic portfolio optimization problem
that was originally considered by Merton [24]. The drift vector,
volatility matrix and interest rate are now all assumed to be
constant. For an investor with a constant relative risk aversion the
optimal solution is to adopt a CP strategy. In this case (3) reduces
to

WT = W0 exp


(1 − θ⊤1)rT +
1
2
θ⊤(diag(ΣΣ⊤) − ΣΣ⊤θ)T



×

n∏
i=1


P (i)
T

P (i)
0

θi

. (6)

Despite all the attention that has been paid to this problem in the
literature, we have only seen the expression forWT in (6) in [15].

2.3. Studying return predictability

The CP strategy is often used as a base case when studying
the value of predictability in security prices. Predictability is often
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(see, for example, [23]) induced by setting Σt = Σ , a constant,
and allowing the drift term, µt , to be a function of some state
vector process, Xt say. In that case the expression in (6) still applies
and terminal wealth is a function of only the terminal security
prices. Moreover, the expected utility of any CP strategy can often
be determined in closed form when the distribution of PT is also
known. For example, if log(Pt) is a (vector) Gaussian process,
thenWT is log-normally distributed. Moreover if we assume CRRA
utility then the value function for the CP strategy,

Vt := Et[W
1−γ

T /(1 − γ )], (7)

can be computed analytically. Using (7) it is also possible to
compute the optimal CP strategy and compare it to the CP strategy
that an investor would employ if he ignored the predictability of
returns and assumed a constant investment opportunity set. (The
static strategy obtained frommaximizing (7) is the CP strategy that
an investor would employ if he was forced to select a CP strategy
and knew the true price dynamics. In contrast, an investorwhowas
ignorant of the true price dynamics and believed the investment
opportunity set was not time varying would willingly select a CP
strategy. However, the two CP strategies would not coincide.)

Eqs. (6) and (7) can also be used to determine themyopic strat-
egywhere at each time t , the investor solves his portfolio optimiza-
tion problemby assuming that the instantaneousmoments of asset
returns are fixed at their current values for the remainder of the in-
vestment horizon. The myopic strategy ignores the hedging com-
ponent of the optimal trading strategy and has also been studied
extensively in the literature. See, for example, [19,21,5,3]. Again (3)
and (7) will often simplify the numerical calculations when study-
ing the performance of myopic policies.

2.4. The dual approach to portfolio evaluation

Haugh and Jain [15] used the preceding observations to
compute duality-based upper bounds on the value function of
the optimal dynamic trading strategy when return predictability
was induced via the drift process, µt . In addition to improving
the efficiency of their numerical algorithms, the closed form
expression for the value function in (7) allowed them to construct
(in the case of CP strategies) upper bounds on the optimal value
function that were superior and theoretically more satisfying than
those calculated originally by Haugh et al. [16].

2.5. The Kelly criterion

The Kelly criterion is a particular constant proportion strategy
that is only consistent with the goal of maximizing expected utility
when the investor has log utility and when there is a constant
investment opportunity set. When the investment opportunity
set is constant it will outperform any other strategy in the ‘‘long
run’’. The related fractional Kelly criterion is also a CP strategy
and is reputedly commonly employed by some of the most well
known and respected investors in the world. In a continuous-time
framework, our expression in (3) forWT lends itself to the analysis
of both Kelly and fractional Kelly. It would be quite straightforward
using (3), for example, to study the errors made by Kelly when the
investment opportunity set is not constant.

3. The CP strategy versus the buy-and-hold portfolio

In this section, we will use (3) to compare the performance of a
given CP strategy with the corresponding buy-and-hold strategy.
We will now refer to the risk-free asset as the 0th security and
use θ0 to denote the fraction of wealth invested in this security.
Unless otherwise stated, we will assume that 0 ≤ θi ≤ 1 for each
i = 0, . . . , n and that

∑n
i=0 θi = 1 so that borrowing and short
sales are forbidden. Consider now a buy-and-hold strategy where
at time t = 0 we invest a constant proportion, θi, of our time
t = 0 wealth in the ith security for i = 0, . . . , n. Assuming that
we started with an initial wealth of W0, then the gross return at
date T is given by

WT

W0
=

n−
i=0

θi
P (i)
T

P (i)
0

. (8)

Similarly (and noting that we now use θ to denote (θ0, . . . , θn)
⊤)

we can rewrite (3) as

WT

W0
= exp


1
2
θ⊤

∫ T

0
(diag(Σa

t Σ
a⊤
t ) − Σa

t Σ
a⊤
t θ)dt



×

n∏
i=0


P (i)
T

P (i)
0

θi

(9)

= exp


1
2

∫ T

0


n−

i=0

θiVar(R
(i)
t ) − Var(θ⊤Rt)


dt



×

n∏
i=0


P (i)
T

P (i)
0

θi

(10)

where Σa
t is the instantaneous variance–covariance matrix of the

n + 1 securities and Rt = (R(0)
t , . . . , R(n)

t ) is the time t vector of
their instantaneous returns. That is, R(i)

t = dP (i)
t /P (i)

t . Also note that
the first row and first column ofΣa

t contain only zeros and the sub-
matrix beginning at the (2, 2)th element is identical toΣt . We now
have the following lemma which immediately establishes that the
exponential term in (10) is strictly greater than 1.

Lemma 3.1. If 0 ≤ θi ≤ 1 for each i = 0, . . . , n and
∑n

i=0 θi = 1
then

n−
i=0

θiVar(R
(i)
t ) − Var(θ⊤Rt) ≥ 0 for all t ∈ [0, T ]. (11)

Proof. Let σ 2
i := Var(R(i)

t ) and σij := Cov(R(i)
t , R(j)

t ). First note that
since σij ≤ σiσj for all i, j it follows that−
i<j

θiθjσi,j ≤

−
i<j

θiθjσiσj

for all θi, θj ≥ 0 and so we immediately obtain that Var(θ⊤Rt) ≤

(
∑n

i=0 θiσi)
2. It therefore follows that

n−
i=0

θiVar(R
(i)
t ) − Var(θ⊤Rt) ≥

n−
i=0

θiσ
2
i −


n−

i=0

θiσi

2

=

n−
i=0

θiσixi

where xi := σi −
∑n

j=0 θjσj. But
∑n

i=0 θixi = 0 since
∑n

i=0 θi = 1
and so it follows that

∑n
i=0 θiσixi ≥ 0 and the result follows. �

3.1. Compensation for earning the geometric mean

We are now in a position to compare (8) and (10). In particular,
we can apply the general arithmetic–geometricmean inequality to
conclude that

n−
i=0

θi
P (i)
T

P (i)
0

≥

n∏
i=0


P (i)
T

P (i)
0

θi

(12)

since, by assumption, the θi’s are all non-negative. In light of
Lemma 3.1 and the inequality in (12) we can therefore interpret
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the exponential term in (10) as the (multiplicative) compensation
that an investor receives for accepting the geometric mean of a
CP strategy instead of the arithmetic mean of the corresponding
buy-and-hold strategy. This compensation is similar to holding a
regular option in that the CP strategy is long gamma: it therefore
profits from the act of rebalancing by selling high and buying low
and, conditional on the terminal security prices, it is long volatility.

Moreover an investor in a CP trading strategy benefits from
knowing that the geometric mean of the underlying security
returns will constitute a lower bound on his overall portfolio
return. The degree to which the realized return outperforms this
lower boundwill depend on the realized variances and covariances
of the securities. This long volatility feature of CP strategies
has been (at least informally) identified by others. For example,
Luenberger [22] demonstrates how an investor can benefit from
volatility by rebalancing his portfolio in each period and he refers
to this phenomenon as volatility pumping. More generally, the large
literature on the Kelly criterion (see the references listed earlier
in Section 1) and proportional betting has long been aware of this
fact. But as stated earlier, the expression in (9) does not seem to
be known in the literature and though it is simple to derive, the
link between the geometric and arithmetic means also seems to
be new.

While these observations apply whenever 0 ≤ θi ≤ 1 and∑n
i=0 θi = 1, i.e. when there are no short selling and no-borrowing

constraints on the CP strategy, they can also apply for certain θ
vectors that do not satisfy these constraints. This is demonstrated
in the following result.

Lemma 3.2. Suppose Σt = Σ is a constant matrix for all t and that
σ 2
i := Var(R(i)

t ). Let ((1 −
∑n

i=1 θ∗

i ), θ∗

1 , . . . , θ∗
n ) denote the vector

of portfolio weights that maximizes the exponential term in (10).
Then the vector of optimal weights on the risky securities, θ∗

=

(θ∗

1 , . . . , θ∗
n ), satisfies

θ∗
:=

1
2
(ΣΣ⊤)−1

[σ 2
1 · · · σ 2

n ]
⊤ (13)

in which case the exponential term in (10) reduces to

exp

T
4
[σ 2

1 · · · σ 2
n ](ΣΣ⊤)−1

[σ 2
1 · · · σ 2

n ]
⊤


(14)

which is always greater than or equal to one.

Proof. Let f (θ0, . . . , θn) :=
∑n

i=0 θiVar(R
(i)
t ) − Var(θ⊤Rt) which

is the integrand in the exponential term in (10). Since the first
security is assumed to be risk-free we may write

f (θ0, . . . , θn) =

n−
i=1

θi(1 − θi)σ
2
i − 2

−
1≤i<j≤n

θiθjσij. (15)

The first-order optimality conditions formaximizing f are given by

ΣΣ⊤θ∗
= [σ 2

1 · · · σ 2
n ]

⊤ (16)

which has (13) as its solution. It is also easy to check that the
second-order conditions for a maximum are satisfied. Substituting
(13) into (15), integrating from 0 to T and applying the exponential
function we immediately obtain (14). Moreover, since the inverse
of a positive-definite covariance matrix is also positive-definite it
follows that the left-hand side of (14) is greater than or equal to
one. Finally the position in the risk-free asset is given by (1 −∑n

i=1 θ∗

i ). �

Referring to Lemma 3.2, note that there is no reason why some
components of θ∗ cannot be negative or exceed one. As a result,
it is possible that the CP strategy with the greatest, i.e. most
positive, exposure to realized variances and covariances requires
short selling and leveraged positions in the underlying securities.
Of course, while the arithmetic–geometric mean inequality will
generally no longer apply, we can still interpret the exponential
term in (10) as the (multiplicative) premium that you earn for
following the CP strategy instead of the corresponding buy-
and-hold strategy. Also note that the assumption of a constant
matrix, Σ , in Lemma 3.2 is not strictly necessary to draw these
conclusions.

These observations are perhaps surprising, given our results
on leveraged ETFs in Section 4 where n = 1 and |θ1| > 1. In this
case, we will see that the exposure to realized variance is always
negative, the arithmetic–geometric mean inequality does not
apply and that the exponential term in (10) can be interpreted as
the (multiplicative) premium that you must pay for following the
CP strategy, i.e. for purchasing the leveraged ETF.

4. Leveraged ETFs

A leveraged ETF is an exchange-traded derivative security with
just a single underlying security or index. It promises to track θ
times the daily performance of the underlying index and usually
achieves this through the use of total return swaps. As in [1], we
can approximate the value of the LETFwith the following stochastic
differential equation

dLt
Lt

= θ
dPt
Pt

+ (1 − θ)rdt − f dt (17)

where Lt is the time t value of the LETF and f is the constant
expense ratio of the LETF. The (1 − θ)rdt term in (17) reflects the
cost of funding the leveraged position (when θ > 1) or the risk-
free income from an inverse ETF (when θ < 0). Avellaneda and
Zhang [1] and (in the case where Pt follows a geometric Brownian
motion) Cheng and Madhavan [7] solved (17) to obtain

LT
L0

=


PT
P0

θ

exp


(1 − θ)rT − fT +
1
2
θ(1 − θ)

∫ T

0
σ 2
t dt


(18)

and used this expression to explain the empirical performance of
LETFs.

One of the principal motivations for this note is to argue that
this performance should have been anticipated in the market,
given the ubiquity of CP trading strategies in the literature. Indeed
if we ignore the expense ratio, then it is clear from (17) that the
dynamics of Lt are simply those of a CP trading strategy and indeed
(3) reduces to (18) in the single risky asset case where we now
write σt for Σt . The expense ratio, being deterministic, simply
results in the time T value of the LETF being reduced by a factor
of exp(−fT ).

It isworthwhile contrasting (18)with the time T value of a static
position of θ times the underlying index that was initiated at time
t = 0. If we denote the time T value of such a position by ST , then
it is clear that

ST
S0

=
θPT − (θ − 1) exp(rT )P0

P0
. (19)

This of course is just (8) in the case of a single risky security
together with the risk-less cash account. Many of the original
investors in LETFs believed that their returns would resemble the
returns in (19) once they had adjusted for the expense ratio, f . And
while they would have been justified in this belief in times of low
volatility and short investment horizons, the difference between
(18) and (19) can be quite remarkable when realized volatility is
high.
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(a) ProShares ultra financial. (b) ProShares ultra short financial.

Fig. 1. Performance of LETFs versus leveraged buy-and-hold positions in underlying index.
(a) ProShares ultra financial. (b) ProShares ultra short financial.

Fig. 2. Actual performance of leveraged ETFs versus performance predicted by (18).
Consider, for example Fig. 1(a) where we have plotted the
performance of the ProShares Ultra Financial ETF (ticker UYG)
against a static position of 2 × the I-Shares Financial Sector ETF
(ticker IYF ) between August 2008 and 2009. We assume that we
entered into both positions at the end of July 2008. The ProShares
ETF is a leveraged ETF that is designed to track two times the daily
performance of the Dow Jones Financial Index (DJFI) while the I-
Shares ETF is designed to simply track the DJFI. The discrepancy
between the two performances is dramatic and is explained by the
very high level of realized variance in that period. Note that an
investor in a leveraged ETF with θ = 2 is short realized variance as
suggested by (18).

Similarly in Fig. 1(b), we have plotted the performance of
the ProShares Ultra Short Financial ETF (ticker SKF ) against a
static position of −2 × the I-Shares Financial Sector ETF, again
between August 2008 and 2009. Note that the ProShares Ultra
Short Financial ETF is a leveraged ETF that is designed to track
minus two times the daily performance of the DJFI. The discrepancy
between the two is again dramatic and is of course explained by
the very high level of realized variance in that period. Note that
an investor in a leveraged ETF with θ = −2 is once again short
realized variance.

In fact, any value of θ < 0 or θ > 1 results in a negative expo-
sure to realized variance for a fixed value of the terminal price of
the underlying index, PT . As demonstrated in Lemma 3.2, this does
not hold in the more general case when following a CP strategy
with multiple risky securities. Moreover the effect is asymmetric
in that an LETF with a leverage of θ > 1 is not as short variance as
an inverse ETFwith a leverage of−θ . This short position in realized
variance is best explained by noting that for values of θ ∉ [0, 1]
the act of daily rebalancing will require the manager of the LETF
to ‘‘sell low’’ and ‘‘buy high’’. The greater the realized variance, the
greater the magnitude of rebalancing and so the greater the losses
on the LETF. Thus the daily rebalancing is similar to delta-hedging a
short position in a vanilla European option where one is also short
realized variance. In contrast, an ETF corresponding to a value of
θ ∈ (0, 1) is long realized variance and benefits from high levels
of realized variance, again conditional on PT . We will return to this
issue again in Section 4.2.

Our discussion on the performance of leveraged ETFs has
implicitly assumed that their returns are well approximated by
(18). As demonstrated by Avellaneda and Zhang [2,1], this is
indeed the case, even when markets are highly volatile. They
analyze the tracking error when the actual performance of LETFs
is approximated by (18) and conclude that even in very volatile
markets, the error is small. For example, in Fig. 2(a) we graph the
performance of the ProShares Ultra Financial LETF (θ = 2) against
the performance implied in (18).We assumed in the latter case that
r = f = 1%. (Over this period the 1-month risk-free rate moved
from approximately 1.6% to.1% but we find using a constant rate
of 1% makes no discernable difference to the results.) Note that
the two graphs are in extremely close agreement with one another
despite the very high levels of realized volatility during that period.

Similarly in Fig. 2(b), we graph the performance of the
ProShares Ultra Short Financial LETF (θ = −2) against the perfor-
mance implied in (18). We again assumed in the latter case that



M.B. Haugh / Operations Research Letters 39 (2011) 172–179 177
r = f = 1%. While the two graphs are very similar there
is nonetheless a clear discrepancy between the two which Avel-
laneda and Zhang put down to the difficulty in shorting financial
stocks during this period. Of the 56 LETFs considered by Avellaneda
and Zhang, this was atypical and the tracking error was generally
closer to that of Fig. 2(a). These observation help to justify our ear-
lier claim that (3) should hold approximately even in the presence
of jumps.

Further empirical evidence concerning the ability of (18) to
explain LETF performance can be found in [2]. (Indeed we have
intentionally examined in this section some of the same datasets
considered by Avellaneda and Zhang [2].)

Before concluding this section, it is worth mentioning the ef-
fects that the presence of LETFs can have on market microstruc-
ture. Because LETFs need to buy at the close when the market is
up and sell at the close when the market is down, they have been
blamed (see, for example, [20]) for increasing volatility at the close.
Furthermore, because the direction of the daily rebalancing trades
are widely known in the market, it is suspected that many propri-
etary trading desks have regularly front-run these trades. They are
therefore suspected of adding to market volatility at the close as
well as negatively impacting LETF performance. Cheng and Mad-
havan [7] provide an account of these microstructure effects and
estimate the aggregate daily hedging demand of LETFs in the mar-
ket. (It is perhaps also worth mentioning that variance-swaps are
somewhat similar in that the hedging of variance-swaps also re-
quires daily rebalancing at the close.)

4.1. How good is the approximation?

As mentioned above, the approximation in (3) appears to work
very well even when markets are volatile. This of course was the
case during the financial crisis of 2008, a period included in Figs. 1
and 2 above. It is worthmentioning, however, that the largest daily
log-return in the I-Shares Financial Sector ETF (ticker IYF ) between
August 1st 2008 and July 31st 2009 was 14.6% whereas the largest
negative return was −17.1%. While such daily moves are indeed
large, it would of course be possible to obtain even more extreme
returns if the security underlying the LETF was a stock say, rather
than an index which is typically less volatile.

In this section, we therefore consider the performance of the
approximation in (3) (or equivalently in (18)) when more extreme
moves are possible. In particular, we consider the case where the
true price process is a jump-diffusion process and analyze the
performance of the approximation under these dynamics. Before
doing so, however, it is worth emphasizing that when sampling
discretely from the underlying price process (as is the case when
an LETF is rebalanced daily rather than continuously) it is not
possible to infer whether the process is a diffusion process or a
discontinuous process. As a result, the question of how well (18)
performs for very volatile markets might just as well be answered
by considering diffusions with very large instantaneous volatilities
as opposed to explicitly considering jump-diffusions. Nonetheless
wewill consider the jump-diffusion case as it is easier to isolate the
approximation errors that occur in this case. We therefore assume
that the price dynamics now satisfy

dPt
Pt

= µtdt + σtdBt + dJt (20)

where Jt is a pure-jump process. We can solve (20) to obtain

PT = P0 exp
∫ T

0


µt −

σ 2
t

2


dt +

∫ T

0
σtdBt


×

∏
0<s≤T

(1 + ηs) (21)
where the product in (21) is taken over the jump times in [0, T ]

and ηs ∈ [−1, ∞) is the relative jump size when a jump occurs at
time s.

Consider now a constant proportion trading strategy where θ
denotes the target fraction of wealth invested in the risky security.
(We say ‘‘target’’ since the fraction of wealth invested in the
security will no longer be θ immediately after a jump in the price
of the underlying security.) The terminal wealth of the CP strategy
is then easily seen to satisfy

WT = W0 exp
∫ T

0

[
(1 − θ)rt + θµt −

θ2σ 2
t

2

]
dt

+ θ

∫ T

0
σtdBt

 ∏
0<s≤T

(1 + θηs)

= W0


PT
P0

θ

exp


(1 − θ)

∫ T

0
rtdt

+
1
2
θ(1 − θ)

∫ T

0
σ 2
t dt

 ∏
0<s≤T

(1 + θηs)

(1 + ηs)θ
. (22)

Comparing (22) with (3) (in the case of a single underlying
security) we see that the only apparent difference between the two
expressions is∏
0<s≤T

(1 + θηs)

(1 + ηs)θ
(23)

which clearly converges to 1 as the permitted relative jump sizes
decrease in magnitude to 0. However, this difference is somewhat
misleading as the relative error of (23) would be partially offset in
the approximation (3). To see this more clearly, suppose that the
true price process is a pure-jump process which therefore has no
diffusive component. This implies that the term

exp

1
2
θ(1 − θ)

∫ T

0
σ 2
t dt


in (22) vanishes. A user of the approximation in (3), however, will
still calculate such a term. In particular they will include the term

exp


1
2
θ(1 − θ)

−
0<s≤T

log(1 + ηs)
2


(24)

when they approximate (3) and this follows since
∑

0<s≤T
log(Ps/Ps−)2 =

∑
0<s≤T log(1 + ηs)

2. (The expression in (24) is
consistentwith our approximation of

 T
0 σ 2

t dt with
∑

log(Pi+1/Pi)2
whichwe have used to generate Figs. 1 and 2.We are therefore im-
plicitly ignoring the drift terms when approximating

 T
0 σ 2

t dt . This
is a standard practice (see the variance-swaps market, for exam-
ple) and is justified because the drift terms are negligible at the
frequency of daily rebalancing.)

Therefore the relative error that results from jumps, or
equivalently daily rebalancing rather than continuous rebalancing,
is more accurately expressed as

exp


−

1
2
θ(1 − θ)

−
0<s≤T

log(1 + ηs)
2

 ∏
0<s≤T

(1 + θηs)

(1 + ηs)θ
. (25)

Note in particular the inclusion of theminus sign in the exponential
term in (25). Note also that our argument implicitly assumes that
there is at most one jump per day but this assumption was only
made to simplify the exposition and is easily relaxed.

In Table 1, we calculate both (23) and (25) for the case where
exactly one jump occurs in [0, T ]. We consider relative jump sizes
ranging from −50% to +100% and leverage values equal to −2,
−1, 2 and 3. First note that, we have used 0∗ to denote those
cases where (23) or (25) is negative. This occurs when WT in
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Table 1
Approximation errors when using (18) to calculate LETF performance.

Relative jump size (%) Approximation error = (1 + θηs)/(1 + ηs)
θ Corrected approximation error = e(− 1

2 θ(1−θ) log(1+ηs)
2)(1 + θηs)/(1 + ηs)

θ

θ = −2 θ = −1 θ = 2 θ = 3 θ = −2 θ = −1 θ = 2 θ = 3

−50 0.500 0.75 0 0∗ 2.1132 1.213 0 0∗

−40 0.648 0.84 0.556 0∗ 1.4176 1.090 0.721 0∗

−30 0.784 0.91 0.816 0.292 1.1483 1.034 0.927 0.427
−20 0.896 0.96 0.938 0.781 1.0404 1.009 0.985 0.907
−10 0.972 0.99 0.988 0.960 1.005 1.001 0.999 0.993
10 0.968 0.99 0.992 0.977 0.995 0.999 1.001 1.004
20 0.8640 0.96 0.972 0.926 0.955 0.992 1.005 1.023
30 0.676 0.91 0.947 0.865 0.8311 0.975 1.014 1.063
40 0.392 0.84 0.918 0.802 0.551 0.941 1.029 1.126
50 0 0.75 0.889 0.741 0 0.884 1.048 1.213
60 0∗ 0.64 0.859 0.684 0∗ 0.798 1.072 1.326
70 0∗ 0.51 0.830 0.631 0∗ 0.676 1.101 1.469
80 0∗ 0.36 0.803 0.583 0∗ 0.509 1.134 1.644
90 0∗ 0.19 0.776 0.539 0∗ 0.287 1.171 1.857
100 0∗ 0 0.750 0.500 0∗ 0 1.213 2.113
(22) is negative due to the combination of relative jump size and
the leverage, θ . Due to the limited liability of an LETF position,
however, we have replaced these terms with 0. As expected, the
corrected approximation error is closer to 1 than the uncorrected
approximation error. Moreover, we see that these approximation
errors become more significant at the higher levels (positive or
negative) of leverage. This of course is to be expected.

We have also highlighted in bold those parts of Table 1 that are
most relevant to Figs. 1 and 2, which have leverage levels of θ = 2
and θ = −2, respectively. As mentioned earlier the largest daily
log-return in the underlying security, the I-Shares Financial Sector
ETF, was +14.6% in the relevant time period, whereas the largest
negative daily log-return was −17.1%. It is clear from Table 1 that
the corrected approximation error should be very small for jumps
of these magnitudes. Indeed it is easy to check that the estimated
relative errors for these realized returns (−17.1% and +14.6%)
are closer to the ±10% errors rather than the ±20% errors. The
performance of the approximation in (3) in Figs. 1 and 2 is therefore
not surprising.

What is interesting about Table 1 is how significant the approx-
imation errors can be when we consider extreme moves that are
greater in magnitude than 30%, say. It is clear then that the ap-
proximation becomes considerably less accurate and should not be
relied upon as a guide to LETF pathwise performance. This then sug-
gests that (3)would be a poor approximation for LETF performance
when the underlying securities are volatile single stocks.

4.2. A constant proportion ETF?

Given the inability of most investors to time the market,
constant proportion trading strategies should, at least in the
absence of market frictions, be reasonably close to optimal for
investors with power or logarithmic utility. The costs associated
with daily rebalancing, however, would be prohibitively expensive
and time consuming for individual investors. It might be possible,
however, for an actively managed ETF to employ such a strategy. It
would be similar to a regular LETF only instead of one underlying
risky security, there could be n underlying risky securities. For
example, an investor wishing to invest in global equity markets
might be interested in an ETF that tracks the daily returns of the
S&P 500, the Eurostoxx 50 and the Nikkei 225. In this case, we
would have n = 3.Moreover, if 0 ≤ θi for i = 1, 2, 3 and

∑3
i=1 θi ≤

1, then we know such a product would have a long exposure to
market volatility, in contrast to LETFs. Such a product, a constant
proportion ETF (CPETF) say, could be suitable for unsophisticated
investors.

In addition, the manager of a CPETF would necessarily sell at
the close after an up-day and buy at the close after a down-day
and would therefore tend to dampenmarket volatility at the close.
If rebalancing costs were too expensive, then the CPETF could be
allowed to rebalance less frequently, say once a week or once a
month. Or alternatively, it might be required to be balanced at the
close only one day a month. This would make it difficult for pro-
prietary trading desks to front-run the CPETF manager. Of course,
such a CPETF would only be permitted as long as it satisfied vari-
ous regulatory and transparency requirements.While less frequent
rebalancing would render (9) a less useful approximation, the in-
sights from (9) should still apply.
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