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We use the recently proposed duality approach to study the performance of static, myopic and
generalized buy-and-hold (GBH) trading strategies. Our interest in static and GBH strategies is
motivated by the fact that these strategies are intuitive and straightforward to implement in
practice. The myopic strategy, while more difficult to implement, is often close to optimal and
so we use it to obtain tight bounds on the performance of the true optimal dynamic trading
strategy. We find that while this optimal dynamic strategy often significantly outperforms the
GBH strategy, this is not true in general when no-borrowing or no-short-sales constraints are
imposed on the investor. This has implications for investors when a dynamic trading strategy
is too costly or difficult to implement in practice. For the class of security price dynamics
under consideration, we also show that the optimal GBH strategy is always superior to the
optimal static strategy. We also demonstrate that the dual approach is even more tractable
than originally considered. In particular, we show it is often possible to solve for the
theoretically satisfying upper bounds on the optimal value function that were suggested when
the dual approach was originally proposed.

Keywords: Portfolio optimization; Duality; Generalized buy-and-hold strategy

1. Introduction

Ever since the pioneering work of Merton (1969, 1971),

Samuelson (1969) and Hakansson (1970), considerable

progress has been made in solving dynamic portfolio

optimization problems. These problems are ubiquitous:

individual agents, pension and mutual funds, insurance

companies, endowments and other entities all face the

fundamental problem of dynamically allocating their

resources across different securities in order to achieve a

particular goal. These problems are often very complex

owing to their dynamic nature and high dimensionality,

the complexity of real-world constraints, and parameter

uncertainty. Using optimal control techniques, these

researchers and othersy solve for the optimal dynamic

trading strategy under various price dynamics in friction-

less markets.

Optimal control techniques dominated until martingale
techniques were introduced by Karatzas et al. (1987) and

Cox and Huang (1989). Under complete market assump-

tions, they showed how the portfolio choice problem

could be decomposed into two subproblems. The first

subproblem solved for the optimal terminal wealth, a

problem which could be formulated as a static optimiza-

tion problem given the complete markets assumption.

The second subproblem then solved for the trading

strategy that replicated the optimal terminal wealth.

This new approach succeeded in expanding the class of

dynamic problems that could be solved.
Dual methods were then used by a number of authors

(Xu 1990, He and Pearson 1991a, b, Karatzas et al. 1991,
Cvitanic and Karatzas 1992, Shreve and Xu 1992a, b) to
extend the martingale approach to problems where mar-
kets are incomplete and agents face portfolio constraints.

*Corresponding author. Email: martin.b.haugh@gmail.com
ySee, for example, Merton (1990), Kim and Omberg (1996), and Liu (2008) and the many references cited therein.
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Duality methods have since been very populary for
tackling other classes of portfolio optimization problems.
These include, for example, problems with transaction
costs and models where trading impacts security prices.

Applying some of these dual methods, Haugh, Kogan
and Wangz (2006) showed how suboptimal dynamic
portfolio strategies could be evaluated by using them to
compute lower and upper bounds on the expected utility
of the true optimal dynamic trading strategy. In general,
the better the suboptimal solution, the narrower the gap
between the lower and upper bounds, and the more
information you therefore have regarding how far the
suboptimal strategy is from optimality. These techniques
apply directly to multidimensional diffusion processes
with incomplete markets and portfolio constraints such as
no-short-selling or no-borrowing constraints.

The first goal of this paper is to use the dual-based
portfolio evaluation technique of HKW to study the
performance of the static, myopic and generalized buy-
and-hold (GBH) trading strategies. A static strategy is a
constantx proportion trading strategy where the agent
invests the same constant proportion of his wealth in
each of the risky assets at all times. A myopic strategy is
a generalization of the static strategy whereby at each
time t the agent solves the dynamic portfolio optimiza-
tion problem assuming the instantaneous moments of
assets returns will remain fixed at their current values for
the remainder of the investment horizon. The static
and myopic strategies are well known in the literature
and further details and references will be provided in
section 3.

We define the GBH strategies to be the class of
strategies where the terminal wealth is a function of only
the terminal security prices. In contrast, the terminal
wealth of a static buy-and-hold strategy is always an
affine function of terminal security prices. Haugh and Lo
(2001) originally introduced these strategies in the context
of static buy-and-hold portfolios that could invest at time
t¼ 0 in a single risky stock, a cash account and European
options{ on the stock. Because the payoffs of European
options only depend on the terminal stock price, the
expected utility of the optimal GBH strategy provided an
upper bound on the expected utility of any static buy-and-
hold strategy.

While the optimal GBH and static strategies will in
general be inferior? to the optimal dynamic trading
strategy, they are interesting in their own right as they are
both intuitive and straightforward to implement in
practice. For the price dynamics under consideration in
this paper we will show that the optimal GBH strategy
always outperforms the optimal static strategy. We use
the myopic strategy and the dual approach of HKW to

compute tight bounds on the expected utility of the
optimal dynamic trading strategy. We can then use these
bounds to determine just how well the static and GBH
strategies perform.

We find that when markets are incomplete and there
are no portfolio constraints, the dynamic unconstrained
optimal strategy often significantly outperforms the
optimal GBH strategy. Once portfolio constraints are
imposed, however, the GBH portfolio can often have a
much higher expected utility than the optimal dynamic
portfolio. In order to draw this conclusion it will be
necessary to assume the existence of some non-con-
strained agents in the market-place who can ‘sell’ the
GBH terminal wealth to constrained investors. While it is
true that under this assumption there is nothing to stop
these agents selling more general path-dependent portfo-
lios to the constrained agents, we believe the simplicity of
the GBH portfolios are more realistic and merit further
study.

The second goal of this paper is to evaluate in further
detail the dual-based approach of HKW and show that it
is even more tractable than originally considered. We use
a simple application of Ito’s Lemma to derive a
closed-form solution for the optimal wealth and expected
utility of this wealth when a static trading strategy is
employed. Though this closed-form solution is particu-
larly simple to derive, we have not seen it presented
elsewhere and it has a number of applications. For
example, it allows us to conclude that the optimal GBH
strategy is always superior to the optimal static strategy.
We can also use it to compute the precise and more
theoretically satisfying upper bound that was originally
proposed by HKW. Because the static strategy’s
value function was unknown to HKW, they were
forced to construct an alternative less satisfying upper
bound.

The closed-form solution also allows us to define and
compute an alternative optimal static trading strategy.
This latter strategy corresponds to an agent who knows
the true price dynamics but is restricted, for one reason or
another, to employing a static trading strategy. This is in
contrast to the usual definition of the optimal static
strategy where the agent chooses a static strategy because
he assumes that the investment opportunity set is not
time-varying. Other applications of the closed-form solu-
tion that pertain to myopic strategies and minimizing
dual-based upper bounds will be discussed in section 5.
The remainder of this paper is organized as follows.
Section 2 formulates the portfolio optimization problem
while section 3 describes the three portfolio strategies.
Section 4 reviews the portfolio duality theory and the
dual approach for bounding the optimal expected utility

ySee Rogers (2003a) for a survey of some of the more recent advances.
zHereafter referred to as HKW.
xOne of the principal results of the early literature (Merton 1969, 1971, Samuelson 1969) is that a static trading strategy is optimal
when the optimizing agent has constant relative risk aversion and security returns are independent and identically distributed.
{Other researchers have also considered the problem of adding options to the portfolio optimization problem. See, for example,
Evnine and Henriksson (1987) and Carr and Madan (2001).
?In related work, Kohn and Papazoglu (2004) identify those diffusion processes where the optimal dynamic trading strategy results
in a terminal wealth that is a function of only the terminal security price. They do this in a complete markets setting.
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for a given dynamic portfolio optimization problem.
In section 5 we derive the terminal wealth and value
function for any static strategy under our assumed price
dynamics. Section 6 contains numerical results and we
conclude in section 7. Most of the technical details are
deferred to the appendices.

2. Problem formulation

In this section we formulate the dynamic portfolio
optimization problem. We will follow the formulation
of HKW.

2.1. The investment opportunity set and security
price dynamics

We assume there are N risky assets and a single risk-free
asset available in the economy. The time t vector of risky
asset prices is denoted by Pt ¼ ðP

ð1Þ
t , . . . ,P

ðN Þ
t Þ and the

instantaneously risk-free rate of return is denoted by r,
a constant.y Security price dynamics are driven by the
M-dimensional vector of state variables Xt so that

dPt ¼ Pt½�PðXtÞdtþ�P dBt�,

dXt ¼ �XðXtÞdtþ�X dBt,
ð1Þ

where X0¼ 0, Bt¼ (B1t, . . . ,BNt) is a vector of N inde-
pendent Brownian motions, �P and �X are N- and
M-dimensional drift vectors, and �P and �X are constant
diffusion matrices of dimensions N by N and M by N,
respectively. We assume that the diffusion matrix, �P, of
the asset return process is lower-triangular and
non-degenerate so that xT�P�T

Px � �kxk
2 for all x and

some �40. Then we can define a process, �t, as

�t ¼ ��1P ð�PðXtÞ � rÞ:

In a market without portfolio constraints, �t corresponds
to the market-price-of-risk process (e.g., Duffie (1996)).
We make the standard assumption that the process �t is
square integrable so thatz

E0

Z T

0

k�tk
2 dt

� �
51:

Note that return predictabilityx in the price processes
in (1) is induced only through the drift vector, �P(Xt), and
not the volatility, �P. In this case it is well known{ that,
in the absence of trading constraints, European option
prices can be uniquely determined despite the fact that the
market is incomplete. It is for precisely the same reason
that any random variable, ZT, can be attained as the
terminal wealth of some dynamic trading strategy if ZT is
a function of only the terminal security prices. It is this
fact that will allow us to use the straightforward

martingale technique to identify the optimal GBH strat-
egy which we will define formally in section 3.3.

2.2. Portfolio constraints

A portfolio consists of positions in the N risky assets and
the risk-free cash account. We denote the proportional
holdings of the risky assets in the total portfolio value by
�t¼ (�1t . . . �Nt). The proportion in the risk-free asset is
then given by ð1� �Tt 1Þ where 1 is the unit vector of
length N. To rule out arbitrage, we require the portfolio
strategy to satisfy a square integrability condition, namely

that
R T
0 k�tk

2 dt51 almost surely. The value of the
portfolio, Wt, then has the following dynamics

dWt

Wt
¼ ½ð1� �Tt 1Þrþ �

T
t �PðXtÞ�dtþ �

T
t �P dBt: ð2Þ

We assume that the proportional holdings in the portfolio
are restricted to lie in a closed convex set, K, that contains
the zero vector. In particular, we assume that

�t 2 K: ð3Þ

If short sales are not allowed, for example, then the
constraint set takes the form

K ¼ f� : � � 0g: ð4Þ

If, in addition, borrowing is not allowed, then the
constraint set takes the form

K ¼ f� : � � 0, 1T� � 1g: ð5Þ

2.3. Market incompleteness

In our setup, market incompleteness occurs for two
reasons. (i) In the absence of portfolio constraints it
occurs when the number of traded securities, N say, is
smaller than the number, L say, of Brownian motions.
This is the typical example of market incompleteness.
(ii) Even when N�L, it can occur when portfolio
constraints are imposed resulting in the inability to
replicate certain payoffs. In fact, it is worth emphasizing
that the first case can be viewed as a subset of the second
case. In particular, when N5L we can imagine adding
L�N assets to the economy so that the market
becomes complete in the sense of (i). However, we can
then insist that the holdings in these new L�N assets
must be zero, resulting in the incompleteness of (ii). We
use this more general formulation in our model and
hence take L¼N in (1).

In the numerical results of section 6, we will use the
term ‘Incomplete markets’ to refer to case (i). Otherwise,
we will refer to the ‘No Short Sales’ or ‘No Short Sales
and No Borrowing’ cases even though the markets in
these cases will be incomplete for both reasons (i) and (ii).

yThe remark immediately following corollary 5.2 in section 5 outlines how we can easily handle stochastic interest rates.
zThroughout the paper we will use Et[�] to denote an expectation conditional on time t information.
xWe say there is return predictability when the moments of the instantaneous returns depend on some observable state process, Xt.
{Step 1 in appendix B explains why this is true.
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2.4. Investor preferences

We assume that the portfolio policy is chosen to maximize
the expected utility, E0[U(WT)], of wealth at the terminal
date T. The function U(W ) is assumed to be strictly
monotone with positive slope, concave and smooth. It is
assumed to satisfy the Inada conditions at zero and
infinity so that limW!0U

0(W )¼1 and limW!1�

U 0(W )¼ 0. In our numerical results, we assume the
investor’s preferences to be of the constant relative risk
aversion (CRRA) type so that

UðW Þ ¼W1��=ð1� �Þ: ð6Þ

The investor’s dynamic portfolio optimization problem is
to solve for the value function, V0, at t¼ 0 where

V0 � sup
�t

E0½UðWTÞ�, ð7Þ

subject to constraints (1), (2) and (3). We will noty
solve (7) but instead focus on the three strategies of
section 3. This is because these strategies can be calculated
in many high-dimensional problems when it is not
possible to obtain the true optimal solution to (7).

3. Trading strategies

In this section we define three strategies that, in general,
are suboptimal solutions to (7). They are: (i) the static
trading strategy, (ii) the myopic trading strategy, and (iii)
the generalized buy-and-hold or GBH strategy. We will use
the static and GBH strategies to demonstrate how most
of the work that is required for calculating upper bounds
on the optimal value function can often be done analyt-
ically. We will also study the performance of these
strategies as they are of interest in their own right. The
static and GBH strategies are of particular interest as they
are intuitive and easy to implement in practice. Though
the myopic strategy is not so easy to implement in
practice, it is often very close to optimal. As a result it can
often serve as a proxy for the optimal strategy when the
latter is not available to us. The dual approach is useful in
implementing this program as it enables us to bound how
far from optimality these strategies are.

3.1. The static trading strategy

A static strategy is a constant proportion trading strategy
where the portfolio weights in the risky assets do not vary
with time or changes in state variables. Despite its name,
however, it is a dynamic strategy as the portfolio needs to
be continuously re-balanced. The optimal static strategy

ignores the predictability of stock returns and is defined
using the unconditional average returns, �0, instead of the
time-varying conditional expected returns on the stocks.
The optimal static strategy may then be found as the
solution to

�static ¼ argmax
�2K
ð�T

0 � rÞ� �
1

2
��T�P�T

P�: ð8Þ

In particular, under the optimal static trading strategy the
agent re-balances his portfolio at each time t so that he
always maintains a constant (vector) proportion, �static, of
his time wealth invested in the risky assets. It is well
knownz that this static strategy is an optimal policy in a
dynamic model with a constant investment opportunity
set and conex constraints on portfolio positions. In
section 5 we will prove a simple proposition showing
that, under the price dynamics in (1), the terminal wealth
resulting from any static trading strategy is a function of
only the terminal security prices.

Remark 1: We should emphasize that the static strategy
is only optimal from the perspective of an agent who
believes that the instantaneous average return, �t, is
constant for all t and equal to �0. In particular, an agent
who knows the the true price dynamics could choose a
superior static strategy. See proposition 5.1 in section 5
for further details.

3.2. The myopic trading strategy

The myopic strategy is defined similarly to the static
policy except that at every time, t, the instantaneous
moments of asset returns are assumed to be fixed at their
current values for the remainder of the investment
horizon. In particular, at each time t the agent invests a
(vector) proportion, �myopic

t , of his time t wealth in the
risky assets where �myopic

t solves

�myopic
t ¼ argmax

�2K
ð�T

PðXtÞ � rÞ� �
1

2
��T�P�T

P�: ð9Þ

The myopic policy in (9) ignores the hedging component{
of the optimal trading strategy. In particular, at each time
t the agent observes the instantaneous moments of asset
returns, �T

PðXtÞ and �P, and, assuming that these
moments are fixed from time t onwards, he solves for
the optimal static trading strategy. As was the case with
the static strategy, the optimization problem in (9) is
obtained immediately from the HJB equation that the
myopic investor formulates at each time t. Because we do
not have a closed-form expression for the terminal wealth
resulting from the myopic strategy, we can estimate its

yThough we will report the optimal solution in the case of no-trading constraints.
zSee Merton (1969,1971) or, more recently, section 6.6 of Karatzas and Shreve (1998).
xA portfolio is cone constrained if the portfolio weights must lie in a non-empty closed convex cone.
{In fact, the hedging component of the optimal trading strategy at any point in time is often defined to be the difference between the
optimal strategy and the myopic strategy. The myopic strategy therefore ignores the hedging component by definition. The reasoning
behind this definition is that the myopic strategy captures that component of the optimal strategy that is explained by the current
investment opportunity set. Any deviation from that component is due to inter-temporal hedging of changes in this investment
opportunity set. See Merton (1990).
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expected utility by simulating the stochastic differential
equations for Xt, Pt and Wt, and solving (9) at each point
on each simulated path.

The myopic strategy is populary in the financial
literature for several reasons. For example, it is expected
that the myopic policy will be very close to optimal when
the hedging component of the optimal trading strategy is
not significant. This will often be true of the model
parameters we use for the numerical experiments of
section 6. The myopic strategy can also be used to
estimate the magnitude of this hedging component.
Moreover it is clear from (8) and (9) that it is as easy to
solve for the myopic policy as it is for the static policy.

3.3. The generalized buy and hold (GBH)
trading strategy

As stated earlier, a GBH strategy is any strategy resulting
in a terminal wealth that is a function of only the terminal
security prices. When the optimizing agent does not face
any trading constraints, the optimal GBH strategy may be
found by solving

V gbh
0 ¼ sup

WT

E0½UðWTÞ�,

subject to the �ðPTÞ-measurability of WT, ð10Þ

where �(PT) is defined to be the �-algebra generated by
the vector of terminal security prices, PT. Moreover,
under the price dynamics in (1), standard martingale
methods may be used to identify the trading strategy that
replicates the solution to (10), W gbh

T .
When the agent does face trading constraints, the

optimal GBH strategy is in general no longer attainable
from a dynamic trading strategy. In this case we rely on
the implicit assumptionz that there are other uncon-
strained agents in the marketplace who can replicate and
therefore uniquely price any GBH strategy. The con-
strained agent is then assumed to ‘purchase’ his optimal
GBH terminal wealth from one of these unconstrained
agents. We then compare the expected utility of the
agent’s optimal GBH terminal wealth to the optimal
wealth that could be attained from a constrained dynamic
trading strategy. We will see in section 6 that the GBH
strategy often significantly outperforms the optimal
constrained dynamic trading strategy.

One possible criticism of this analysis is to ask why the
constrained agent should restrict himself to purchasing
a GBH terminal wealth from an unconstrained agent.
Instead, acting as though he was unconstrained, the agent
could compute his optimal terminal wealth and then
‘purchase’ this wealth from one of the unconstrained

agents who can actually replicate it. While this criticism
has some merit, we believe that the GBH strategies are
simple to understand and, as a straightforward general-
ization of the well-known buy-and-hold strategy, deserve
attention in their own right. Moreover, we believe that
many investors care more about the final level of security
prices, rather than the path of security prices, when they
are evaluating their investment performance. They are
aware that they generally do not possess market-timing
skills but, at the same time, they do not wish to ‘miss the
boat’ on a sustained bull market, for example. Clearly,
access to generalized buy-and-hold strategies would be of
particular interest to such investors.

3.4. Solving for the optimal GBH trading strategy

We now outline the steps required for computing and
assessing the performance of the optimal GBH strategy.
Further details are provided in appendix B where we
specialize to the price dynamics assumed in section 6.

(1) Solving the SDE: We first solve the stochastic
differential equation (SDE) for the price processes,
Pt, and state variable, Xt, under both the
real-world probability measure, P, and any
risk-neutral probability measure, Q. Recall that
since markets are incomplete, a unique risk-neutral
measure does not exist.

(2) Compute the conditional state price density:

We compute the state price density, �bT, conditional
on the terminal security prices. In particular,
we solve for

�bT ¼ E0½�T j P
ðiÞ
T ¼ bi, i ¼ 1, . . . ,N �: ð11Þ

It is worth mentioning that while there are
infinitely many state price-density processes, �t,
we can use any such process on the right-hand side
of (11) and obtain the samex conditional state price
density, �bT. Note that �bT can be interpreted as the
date t¼ 0 price of having $1 at time T in any state
for which PT¼ b.

(3) Compute optimal GBH wealth: We then use the
static martingale approach to solve for the optimal
GBH strategy. In particular, we solve

V gbh
0 ¼ sup

WT

E0
W 1��

T

1� �

" #
, subject to E0½�

b
TWT� ¼W0:

ð12Þ

Note that because of our use of the conditional
state price density, �bT, in (12), we do not need to
explicitly impose the constraint that WT be
�(Pt)-measurable. This constraint will be satisfied
automatically.

ySee, for example, Kroner and Sultan (1993), Lioui and Poncet (2000), Brooks et al. (2002) and Basak and Chabakauri (2008)
zA similar assumption is often used to justify complete-market models and the Black–Scholes model, in particular, for pricing
options. For example, a common criticism of these models states that if markets are complete then we shouldn’t need derivative
securities in the first place. The response to this is that the market is complete only for a small subset of agents whose presence allows
us to uniquely price derivatives. For the majority of investors, the presence of trading frictions and constraints implies that
derivative securities do add to the investment opportunity set.
xThis is consistent with our earlier observation that all European options prices can be uniquely determined despite the market
incompleteness.
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(4) Determine the value function at all intermediate

times: Compute the GBH value function, V gbh
t , for

all t2 [0,T ]. This is effectively the same problem
that we solve in step 3.

(5) Determine the replicating trading strategy: Once the
optimal GBH wealth, W gbh

T , has been determined,
we compute the replicating strategy, � gbh

t , that
attains W gbh

T .
(6) Compute lower and upper bounds on the global

optimal value function: Using the GBH trading
strategy, � gbh

t , and the GBH value function, V gbh
t ,

we can compute an upper bound on the optimal
value function, V0, for the problem in (7). This step
is done using the duality-based algorithm described
in section 4. Note that V gbh

0 constitutes a lower
bound on the optimal value function. If the lower
and upper bounds are close to one another, then
we can conclude that the optimal GBH strategy is
indeed close to the true optimal solution. When the
GBH investor faces trading constraints we will
compare V gbh

0 to the optimal value function, V0,
that results from dynamic trading with constraints.

4. Review of duality theory and construction of

upper bounds

In this section we reviewy the duality approach of HKW
for analysing the quality of a suboptimal strategy. This is
done by using the suboptimal strategy to construct a
lower and upper bound on the true value function. If the
difference between the two bounds is large, i.e. the duality
gap is wide, then it suggests that the suboptimal policy is
not close to the optimal solution. If the duality gap
is narrow, then (i) we know that the suboptimal strategy is
close to optimal and (ii) we know approximately the
optimal value function.

Starting with the portfolio optimization problem of
section 2, we can define a fictitious problem (P(	)), based
on a different financial market and without the portfolio
constraints. First we define the support function of K, 
(�) :
R

N
!R[1, by setting


ð	Þ ¼ sup
x2K
ð�	>xÞ: ð13Þ

The effective domain of the support function is denoted
by eK :¼ f	 2 K : 
ð	Þ51g. Because the constraint set K
is convex and contains zero, the support function is
continuous and bounded from below on its effective
domain eK. Letting {F t} denote the standard Brownian
filtration, we then define the set D of (F t)-adapted
R

N-valued processes to be

D ¼ 	t, 0 � t � T : 	t 2 eK, E0

Z T

0


ð	tÞ dt

� ��
þ E0

Z T

0

k	tk
2 dt

� �
51

�
: ð14Þ

For each process 	 in D, we define a fictitious market

M (	). In this market, one can trade the N stocks and the

risk-free cash account. The diffusion matrix of stock
returns in M (	) is the same as in the original market.

However, the risk-free rate and the vector of expected

stock returns are different. In particular, the risk-free rate

process and the market price of risk in the fictitious

market are defined respectively by

r
ð	Þ
t ¼ rþ 
ð	tÞ, ð15aÞ

�ð	Þt ¼ �t þ��1P 	t, ð15bÞ

where 
(	) is the support function defined in (13).

We assume that �ð	Þt is square-integrable. Following Cox
and Huang (1989), the state-price density process �ð	Þt in

the fictitious market is given by

�ð	Þt ¼ exp �

Z t

0

rð	Þs ds�
1

2

Z t

0

�ð	Þs
>
�ð	Þs ds�

Z t

0

�ð	Þs
>
dBs

� �
,

ð16Þ

and the vector of expected returns is given by

�ð	ÞPt ¼ r
ð	Þ
t þ�P �

ð	Þ
t :

The dynamic portfolio choice problem in the fictitious

market without position constraints can be equivalently

formulated in a static form:z

V
ð	Þ
0 � sup

fWTg

E0½UðWTÞ�, subject to E0½�
ð	Þ
T WT� �W0:

ðPð	ÞÞ

Due to its static nature, the problem (P(	)) is easy to solve.

For example, when the utility function is of the CRRA
type with relative risk aversion � so that U(W )¼W 1��/

(1� �), the corresponding value function in the fictitious

market is given explicitly by

V
ð	Þ
0 ¼

W1��
0

1� �
E0½�

ð	Þ
T

ð��1Þ=�
�
� : ð17Þ

It is easy to see that, for any admissible choice of 	2D,

the value function in (17) gives an upper bound for the

optimal value function of the original problem. In the

fictitious market, the wealth dynamics of the portfolio are

given by

dW
ð	Þ
t ¼W

ð	Þ
t ½ðr

ð	Þ
t þ �

>
t �P�

ð	Þ
t Þdtþ �

>
t �P dBt�, ð18Þ

so that

dW
ð	Þ
t

W
ð	Þ
t

�
dWt

Wt
¼ ½ðr

ð	Þ
t � rtÞ þ �

>
t �Pð�

ð	Þ
t � �tÞ�dt

¼ ð
ð	tÞ þ �
>
t 	tÞ dt:

The last expression is non-negative according to (13)

since �t2K. Therefore, W
ð	Þ
t �Wt 8t2 [0,T ] and so

V
ð	Þ
0 � V0: ð19Þ

yWe borrow from HKW in much of our review.
zSee Karatzas et al. (1987), Cox and Huang (1989), or section 6 of Karatzas and Shreve (1998).
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Under fairly general assumptions, it can be shown that

there exists a process, 		, such that (19) holds with

equality. While one can pick any fictitious market from

the admissible set D to compute an upper bound, HKW

showed how a given suboptimal strategy, e�t, may be used

to select a particularb	t 2 D. If the suboptimal strategy is

in fact optimal, then the lower bound associated with the

suboptimal strategy will equal the associated upper

bound, thereby demonstrating its optimality. We will

now describe howb	t 2 D can be chosen.
In order to construct the fictitious market as defined byb	t, we first use the optimal solution to the dual problem to

establish the link between the optimal policy �	 and value

function V (		), and the corresponding fictitious asset price

processes, as defined by 		. According to the dynamic

programming principle, at any time t

Vt¼V
ð		Þ
t ¼ sup

fWTg

Et½UðWTÞ�, subject to Et
�ð	

	Þ

T

�ð	
	Þ

t

WT

" #
�Wt:

The first-order optimality conditions then imply

U0ðWTÞ ¼ �t�
ð		Þ
T =�ð	

	Þ
t where �t is the Lagrange multiplier

on the time t budget constraint. On the other hand, the

envelope condition impliesy that the partial derivative of

the value function with respect to the portfolio value

satisfies @Vt/@Wt¼ �t. We therefore see that �ð	
	Þ

T =�ð	
	Þ

t ¼

U 0ðWTÞ=ð@Vt=@WtÞ and so we obtain

�ð	
	Þ

s

�ð	
	Þ

t

¼
@Vs=@Ws

@Vt=@Wt
, 8s � t:

The above equality implies that

d ln�ð	
	Þ

t ¼ d ln
@Vt

@Wt
, ð20Þ

so that, in particular, the stochastic part of d ln�ð	
	Þ

t

equals the stochastic part of d ln @Vt/@Wt. If Vt is smooth,

Itô’s lemma and equations (16) and (2) imply that

�ð	
	Þ

t ¼ �Wt
@2Vt=@W

2
t

@Vt=@Wt
�>Pt�

	
t �

@Vt

@Wt

� ��1
�>Xt

@2Vt

@Wt@Xt

� �
,

ð21Þ

where �	t denotes the optimal portfolio policy for the

original problem.
Given an approximation to the optimal portfolio

policy, e�t, one can compute the corresponding approxi-

mation to the value function, eVt, defined as the condi-

tional expectation of the utility of terminal wealth, under

the portfolio policy e�t. If analytic expressions are not

available for e�t and eVt, then approximations to the

portfolio policy and value function can be obtained using

a variety of methods (e.g., Brandt et al. 2005 and Haugh

and Jain 2007). In this paper, we will calculatee�t for the
static, myopic and GBH strategies, and use each one in

turn to construct an upper bound on the unknown true

value function, V0. Assuming that the approximate

value function eVt is sufficiently smooth, we can replace

Vt and �
	
t in (21) with eVt ande�t and obtain

e�t ¼ �Wt
@WW

eVt

@WeVt

 !
�>P

e�t � ð@WeVtÞ
�1�>Xð@WX

eVtÞ, ð22Þ

where @W denotes the partial derivative with respect to W,

and @WX and @WW are corresponding second partial

derivatives. We then definee	t as a solution to (15b) where

�ð	Þt is replaced by e�t.
In the special but important case of a CRRA utility

function the expression for e�t simplifies. In the case of a

CRRA utility function, for a given trading strategy, e�t,
the corresponding value function is of the form

eVt ¼ gðt,XtÞ
W 1��

t

1� �
:

Hence, the candidate market-price-of-risk in the dual

problem simplifies to

e�t ¼ ��>P
e�t ��>XeVt

@eVt

@Xt

 !

¼ ��>P
e�t � �>X

gðt,XtÞ

@gðt,XtÞ

@Xt

� �
, ð23Þ

where � is the relative risk aversion coefficient of the

utility function. One therefore only needs to compute

the first derivative of the value function with respect

to the state variables, Xt, to evaluate the second term

in (23). This simplifies the numerical implementation if

the value function and its derivatives need to be calculated

numerically, since it is easier to estimate first-order partial

derivatives than second-order partial derivatives. In the

case of the static trading strategy, the analytic expression

of proposition 5.1 will enable us to compute an analytic

expression for the partial derivatives. For the GBH

trading strategy we can also compute the value function

and its derivatives analytically. These calculations are

given in appendix B. But for more general strategies such

as the myopic strategy and others, we generally do not

have an analytical solution for the value function and its

derivatives available to us.
Obviously,e�t is a candidate for the market price of risk

in the fictitious market. However, there is no guarantee

that e�t and the corresponding process e	t belong to the

feasible set D defined by (14). In fact, for many important

classes of problems the support function 
(	t) may be

infinite for some values of its argument. We therefore

look for a price-of-risk process b�t 2 D that is ‘close’ to e�t
by formulating a simple quadratic optimization problem

with linear constraints. Depending on the portfolio

constraints, this problem may be solved analytically.

Otherwise, we solve it numerically at each discretization

point on each simulated path of the underlying SDEs.

The lower bound is then computed by simulating the

given portfolio strategy. The same simulated paths of the

SDEs are then used to estimate the upper bound given

by (17). At each discretization point on each simulated

ySee Karatzas and Shreve (1998), section 3.7, theorem 7.7 for a formal proof.
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path we solve a quadratic optimization problem to find
the appropriate b�t 2 D. See HKW for further details.

It is worth mentioning that when HKW were comput-
ing the upper bounds corresponding to the static and
myopic strategies, they only used the first term on the
right-hand side of (23) as an expression for the second
term was unavailable. While the resulting bounds were
still valid upper bounds, they were not the precise bounds
as prescribed by their algorithm. In this paper, proposi-
tion 5.1 in section 5 allows us to use both termsy on the
right-hand side of (23) to derive the upper bound
corresponding to the static strategy. We can also calculate
both terms on the right-hand side of (23) for the GBH
strategy.

5. An explicit solution for the static strategy

We have the following proposition which solves for the
terminal wealth corresponding to any static trading
strategy.

Proposition 5.1: Suppose price dynamics satisfy (1) and a
static trading strategy is followed so that at each time
t2 [0,T ] a proportion, �, of time t wealth is invested in the
risky assets with 1� �>1 invested in the risk-free asset.
Then the terminal wealth, WT, resulting from this strategy
only depends on the terminal prices of the risky assets, PT.
In particular, we have

WT ¼W0 exp ð1� �
>1ÞrTþ

1

2
�>ðdiagð�P�>P Þ

�
��P�>P�ÞTþ �

> ln
PT

P0

� ��
: ð24Þ

Proof: See appendix A. œ

While straightforward to derive and perhaps not
particularly surprising, we have not seen the statement
of proposition 5.1 elsewhere. Moreover, it has a number
of applications. First, the static strategy is typically used
as a base case when researchers study the value of
predictability in security prices. Since predictability is
often induced via the drift term as in (1), the expression
in (24) applies. This means that the expected utility of the
static strategy can often be determined in closed form
when the distribution of PT is also known. For example,
if log(Pt) is a (vector) Gaussian process, then WT is
log-normally distributed and

Vstatic
t ¼ Et½W

1��
T =ð1� �Þ� ð25Þ

can be computed analytically. This is obviously much
more efficient than computing V static

t numerically by
simulating the underlying stochastic differential equations
for Xt, Pt and Wt.

This latter simulation approach was used by HKW
when using the static strategy to compute lower and upper
bounds on the expected utility, V0, of the true optimal
dynamic trading strategy. Moreover, because the analytic
expression for V static

t in (24) was unavailable, HKW were
unable to compute the more theoretically satisfying upper
bound on V0 that uses both terms on the right-hand side
of (23). Using (24), it is straightforward to compute these
two terms and then use Monte Carlo to determine the
corresponding upper bound. This is the second applica-
tion of proposition 5.1.

Third, the ability to compute V static
t analytically also

implies that the true optimal static strategy, �static_opt, can
be found by directly maximizing V static

t over � instead of
solving (8). This would be the strategy chosen by an
investor who knows the true price dynamics in the market
but who is restricted, for one reason or another, to
choosing a static strategy. In section 6 we will briefly
compare the performance of �static_opt with the static
strategy, �static, defined in (8). We will see that �static_opt

can often significantly outperformz �static. That said,
we will use �static as our ‘optimal’ static strategy with
which we will compare the GBH and myopic strategies.
We do this for two reasons: (i) in order to be consistent
with HKW and the usual definition of the optimal static
strategy and (ii) because we will not have the analytic
solution of proposition 5.1 available to us for more
general price processes. In such circumstances we would
have to use �static anyway. It is also worth mentioning that
proposition 5.1 would allow us to define an alternative
version of the myopic strategy where at each time t we
maximize (25) assuming the instantaneous moments of
asset returns are held fixed from time t onwards. Again
for reasons of consistency, however, the numerical results
of section 6 were derived using the myopic policy as
defined in section 3.2.

Finally, because the terminal wealth of the optimal
static strategy depends only on the terminal security
prices, we also have the following corollary.

Corollary 5.2: Assuming the price dynamics in (1),
a utility-maximizing agent will always prefer the optimal
GBH strategy to any static strategy.

Remark 2: We have assumed a constant risk-free rate in
(24) but we could easily relax this assumption by
assuming, for example, a Gaussian process for rt.
If log(Pt) was also Gaussian we would again obtain that

yAs in HKW, we continue to omit the second term in (23) when computing the upper bound corresponding to the myopic strategy.
Haugh and Jain (2007), however, show how cross-path regressions and path-wise estimators can be used to efficiently estimate this
second term. Moreover, their numerical results show that the duality gap for the myopic strategy can be reduced by approximately
50% when this second term is included. When we ignore the second term (as we do in this paper for the myopic strategy) we can still
often conclude that the myopic strategy is very close to optimal. This follows when the lower and upper bounds are very close to
each other.
zIn some cases the improvement in the continuously compounded certainty equivalent return can be as large as 1.2% per annum.
In other cases, the improvement is negligible.
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WT was log-normally distributed and the value function
could again be computed analytically. The GBH strategy
and value function could also be calculated analytically
but corollary 5.2 would no longer hold.

5.1. Minimizing the upper bound

It is also possible to solve for the static strategy that
minimizes the upper bound. This can be done by
using (23) and, once again, proposition 5.1. This is of
interest because (i) it helps demonstrate the general
tractability of the dual approach in many circumstances
and (ii) it is of interest to see whether strategies that
optimize (over some class of suboptimal strategies) the
lower and upper bounds coincide. In appendix C we
do this for the particular set of dynamics assumed in
section 6. We find in the case of incomplete markets that
there are infinitely many static strategies that minimize
the upper bound, none of which coincide with the static
strategy of (8).

6. Numerical results

We use the samey model specification as that of HKW
who in turn specify their model as a continuous time
version of the market model of Lynch (2001).
In particular, our model dynamics are as specified
in (1), but now we assume that there are three risky
securities and one state variable so that N¼ 4 and M¼ 1.

We assume the drift of the asset returns, �(Xt), is an affine

function of the single state variable, Xt, which follows a

mean reverting Ornstein–Uhlenbeck process. Hence, it

is an incomplete market model even in the absence of

portfolio constraints. The asset return dynamics satisfy

rt ¼ r,

dPt ¼ Pt½ð�0 þ Xt�1Þdtþ�P dB
P
t �,

dXt ¼ �kXt dtþ�X dBP
t : ð26Þ

The second equation specifies the dynamics of the three

traded risky securities. The diffusion matrix �X is of size 1

by 4 and coincides with the last row of matrix �P. The

vectors �0 and �1 define the drift vector for the risky

securities. The third equation specifies the dynamics of the

state variable, Xt, whose initial value is set to zero in all of

the numerical examples. Recall that in section 2 we

assumed the number of risky securities, N, was equal to

the number of Brownian motions. We maintain consis-

tency with this by simply regarding Xt as the price process

of an additional risky security in which we are always

constrained to keep a zeroz position.
Lynch considered two choices for the state variable:

(i) the dividend yield and (ii) the term spread. The

dividend yield captures the rate at which dividends are

paid out as a fraction of the total stock market value. The

term spread is the difference in yields between 20 year

and one month Treasury securities. Both of these predic-

tive variables are normalized to have zero mean and

unit variance. Lynch also considered two sets of risky

Table 1. Calibrated model parameters. The four sets of model parameters correspond to: (1) size sorted portfolios and the dividend
yield as a state variable; (2) size sorted portfolios and the term spread as a state variable; (3) book-to-market sorted portfolios and
the dividend yield as a state variable; (4) book-to-market sorted portfolios and the term spread as a state variable. Parameter values

are based on the estimates in tables 1 and 2 of Lynch (2001).

k �0 �1 �P

Parameter set 1
0.366 0.081 0.034 0.186 0.000 0.000 0.000

0.110 0.059 0.228 0.083 0.000 0.000
0.130 0.073 0.251 0.139 0.069 0.000
0.000 0.000 �0.741 �0.037 �0.060 0.284

Parameter set 2
1.671 0.081 0.046 0.186 0.000 0.000 0.000

0.110 0.070 0.227 0.082 0.000 0.000
0.130 0.086 0.251 0.139 0.069 0.000
0.000 0.000 �0.017 0.149 0.058 1.725

Parameter set 3
0.366 0.142 0.065 0.256 0.000 0.000 0.000

0.109 0.049 0.217 0.054 0.000 0.000
0.089 0.049 0.207 0.062 0.062 0.000
0.000 0.000 �0.741 0.040 0.034 0.288

Parameter set 4
1.671 0.142 0.061 0.256 0.000 0.000 0.000

0.109 0.060 0.217 0.054 0.000 0.000
0.089 0.067 0.206 0.062 0.062 0.000
0.000 0.000 �0.017 0.212 0.096 1.716

yBy using the same model specification, we can also compare the performance of the static upper bound that we compute using both
terms from the right-hand side of (23) with the upper bound computed in HKW that only used the first term.
zThis is a standard way of embedding the incomplete markets problem into the more general portfolio constraints problem. See the
discussion of market incompleteness in section 2.
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assets: (i) portfolios obtained by sorting stocks on their
size and (ii) portfolios obtained by sorting stocks on their
book-to-market ratio. The two choices of risky assets and
the two choices of the predictive variable result in four
sets of calibrated parameter values. These are reported in
table 1. We set the risk-free rate, r, equal to 0.01
throughout.

As mentioned earlier, we assume that the utility
function is of the constant relative risk aversion
(CRRA) type so that U(W )¼W (1��)/(1� �). We con-
sider three values for the relative risk aversion parameter
�¼ 1.5, 3, and 5. We consider two values for the time
horizon: T¼ 5 and T¼ 10 years. When simulating the
SDEs we use 100 discretization points per year.

We consider three types of market constraints: (i) the
base case where the agent does not face any trading
constraints, (ii) the agent faces no-short-sales and no-
borrowing constraints, and (iii) the agent faces no-short-
sales constraints. In the first case we evaluate the static,
myopic and GBH strategies by computing their value
functions. While the value functions for the static and
GBH strategies can be computed analytically, the value

function of the myopic strategy as well as all of the upper
bounds had to be computed by numerically by simulating
the SDEs. For reasons of consistency, we therefore
estimated all of the bounds by simulating the SDEs.
Since these trading strategies are feasible dynamic trading
strategies, their value functions constitute valid lower
bounds on the value function of the optimal dynamic
trading strategy. We also report the value of this optimal
value function in the base case as it can be computed
explicitly using the results of Kim and Omberg (1996).

Though the optimal value function is available, we also
use the three suboptimal strategies to compute upper
bounds on this optimal value function. There are two
reasons for doing this. First, ours is the first study that can
compute the exacty upper bounds prescribed by the
algorithm of HKW and it would be interesting to see
how they vary with the quality of the lower bounds.
Moreover, in the case of the static strategy, it is of interest
to see how the upper bound here compares with the upper
bound reported in HKW. Second, when dynamic con-
straints are imposed the optimal value function is no longer
available and so it is necessary to compute upper bounds in

Table 2. Incomplete markets. This table reports the results for parameter sets 1 and 2. The parameter sets are defined in table 1.
The rows marked LBs, LBm and Lgbh report estimates of the expected utility achieved by using the static portfolio strategy, myopic
portfolio strategy and generalized buy-and-hold (GBH) portfolio strategy, respectively. Expected utility is reported as a
continuously compounded certainty equivalent return. Approximate 95% confidence intervals are reported in parentheses.
The rows marked UBs, UBm and UBgbh report the estimates of the upper bound on the true value function computed from the static,
myopic and generalized buy-and-hold (GBH) portfolio strategies, respectively. The row marked V u reports the optimal value

function for the problem.

T¼ 5 T¼ 10

�¼ 1.5 �¼ 3 �¼ 5 �¼ 1.5 �¼ 3 �¼ 5

Parameter set 1
LBs 7.49 4.63 3.27 7.70 4.84 3.42

(7.47, 7.51) (4.62, 4.64) (3.27, 3.28) (7.68, 7.70) (4.83, 4.85) (3.42, 3.43)
UBs 9.44 5.93 4.15 10.12 6.61 4.64

(9.40, 9.49) (5.86, 6.00) (4.02, 4.27) (10.09, 10.15) (6.51, 6.71) (4.38, 4.91)
LBm 9.35 5.72 3.97 9.94 6.18 4.29

(9.32, 9.37) (5.70, 5.73) (3.96, 3.98) (9.92, 9.96) (6.16, 6.19) (4.28, 4.29)
UBm 9.46 5.96 4.18 10.14 6.67 4.71

(9.42, 9.50) (5.89, 6.04) (4.06, 4.30) (10.11, 10.17) (6.57, 6.78) (4.44, 4.99)
LBgbh 8.36 5.29 3.75 8.68 5.83 4.22

(8.31, 8.41) (5.24, 5.35) (3.70, 3.80) (8.65, 8.72) (5.78, 5.87) (4.17, 4.27)
UBgbh 9.42 5.91 4.16 10.13 6.64 4.78

(9.35, 9.49) (5.80, 6.02) (4.01, 4.31) (10.08, 10.18) (6.53, 6.75) (4.59, 4.98)
Vu 9.44 5.95 4.19 10.09 6.62 4.75
Parameter set 2
LBs 6.54 3.68 2.59 6.52 3.67 2.58

(6.51, 6.57) (3.67, 3.70) (2.58, 2.60) (6.50, 6.54) (3.66, 3.68) (2.57, 2.58)
UBs 9.14 5.00 3.38 9.33 5.06 3.43

(9.10, 9.19) (4.95, 5.05) (3.33, 3.43) (9.29, 9.36) (5.04, 5.12) (3.38, 3.48)
LBm 9.02 4.92 3.33 9.10 4.95 3.35

(8.99, 9.05) (4.90, 4.93) (3.32, 3.34) (9.08, 9.12) (4.94, 4.97) (3.34, 3.36)
UBm 9.20 5.09 3.47 9.38 5.18 3.52

(9.15, 9.24) (5.04, 5.14) (3.42, 3.53) (9.35, 9.41) (5.14, 5.22) (3.47, 3.57)
LBgbh 6.55 3.70 2.60 6.53 3.69 2.60

(6.51, 6.59) (3.68, 3.72) (2.59, 2.62) (6.50, 6.56) (3.68, 3.71) (2.59, 2.61)
UBgbh 9.19 5.02 3.38 9.58 5.20 3.50

(9.14, 9.24) (4.94, 5.10) (3.30, 3.47) (9.52, 9.63) (5.13, 5.27) (3.42, 3.58)
Vu 9.02 4.92 3.33 9.08 4.94 3.34

yThis is only the case for the static and GBH strategies, but see Haugh and Jain (2007) for the myopic strategy.
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order to determine how far the suboptimal strategies are
from optimality. Since we therefore need to report upper
bounds when trading constraints are imposed, for the sake
of consistency we will also report upper bounds even when
there are no trading constraints. For each of the three
suboptimal strategies, their associated upper bounds are
computed by simulating the underlying SDEs. At each
discretization point on each simulated path, we solve a
simple quadratic optimizationy problem in order to solve
for the market-price-of-risk process in the associated
fictional market. See section 4 and HKW for further
details.

When trading constraints are imposed, we again use the
static and myopic strategies to compute lower and upper
bounds on the true optimal value function. There is
nothing new herez over and beyond what is already
presented in HKW. However, the principal goal of this
section is to compare the optimal GBH strategy with the
static and myopic strategies. Recall that when trading
constraints are imposed we assume that the agent can

purchase the optimal GBH wealth from an unconstrained
agent in the market place. We therefore displayx the
results for the optimal GBH strategy alongside the lower
and upper bounds for the constrained static and myopic
strategies.

In all of our results, we report the expected utility as the
continuously compounded certainty equivalent return, R.
The value of R corresponding to a value function, V0,
is defined by U(W0 e

RT)¼V0. Finally, we mention again
that the static strategy we consider is �static as defined by
equation (8). In section 6.4 we will briefly compare the
performance of �static with the true optimal static strategy,
�static_opt, as defined in section 5.

6.1. Incomplete markets

We first consider the case of incomplete markets where
there are no trading constraints. Tables 2 and 3 report
the estimates of the expected utility under the static,
myopic and GBH portfolio strategies as well as their

Table 3. Incomplete markets. This table reports the results for parameter sets 3 and 4. The parameter sets are defined in table 1.
The rows marked LBs , LBm and Lgbh report estimates of the expected utility achieved by using the static portfolio strategy, myopic
portfolio strategy and generalized buy-and-hold (GBH) portfolio strategy, respectively. Expected utility is reported as a
continuously compounded certainty equivalent return. Approximate 95% confidence intervals are reported in parentheses.
The rows marked UBs, UBm and UBgbh report the estimates of the upper bound on the true value function computed from the static,
myopic and generalized buy-and-hold (GBH) portfolio strategies, respectively. The row marked Vu reports the optimal value

function for the problem.

T¼ 5 T¼ 10

�¼ 1.5 �¼ 3 �¼ 5 �¼ 1.5 � ¼ 3 � ¼ 5

Parameter set 3
LBs 14.65 8.58 5.73 15.03 8.98 6.01

(14.62, 14.68) (8.56, 8.60) (5.72, 5.74) (15.01, 15.05) (8.96, 8.99) (6.01, 6.02)
UBs 16.79 10.27 6.96 17.78 11.52 8.09

(16.73, 16.85) (10.15, 10.39) (6.76, 7.17) (17.74, 17.82) (11.36, 11.68) (7.68, 8.50)
LBm 16.64 9.88 6.61 17.47 10.60 7.10

(16.61, 16.68) (9.86, 9.90) (6.59, 6.62) (17.44, 17.49) (10.58, 10.61) (7.09, 7.12)
UBm 16.81 10.34 7.04 17.82 11.67 8.26

(16.76, 16.87) (10.22, 10.46) (6.83, 7.25) (17.78, 17.87) (11.51, 11.83) (7.84, 8.69)
LBgbh 15.74 9.64 6.57 16.23 10.75 7.63

(15.65, 15.82) (9.53, 9.76) (6.46, 6.70) (16.13, 16.34) (10.63, 10.88) (7.51, 7.76)
UBgbh 16.78 10.36 7.18 17.80 11.65 8.39

(16.68, 16.87) (10.19, 10.53) (6.92, 7.44) (17.73, 17.87) (11.46, 11.86) (8.01, 8.78)
Vu 16.79 10.32 7.06 17.76 11.55 8.12
Parameter set 4
LBs 13.16 7.09 4.65 13.14 7.08 4.65

(13.12, 13.19) (7.07, 7.11) (4.64, 4.67) (13.12, 13.17) (7.06, 7.10) (4.63, 4.66)
UBs 16.06 8.54 5.53 16.28 8.66 5.60

(16.00, 16.13) (8.46, 8.62) (5.44, 5.62) (16.24, 16.33) (8.58, 8.73) (5.50, 5.71)
LBm 15.91 8.45 5.48 16.02 8.51 5.51

(15.87, 15.95) (8.42, 8.47) (5.46, 5.49) (15.99, 16.05) (8.49, 8.54) (5.49, 5.53)
UBm 16.08 8.57 5.56 16.30 8.69 5.64

(16.01, 16.14) (8.49, 8.65) (5.47, 5.65) (16.25, 16.35) (8.61, 8.76) (5.53, 5.74)
LBgbh 13.17 7.11 4.66 13.13 7.10 4.66

(13.11, 13.23) (7.07, 7.14) (4.64, 4.69) (13.09, 13.18) (7.06, 7.13) (4.63, 4.68)
UBgbh 16.14 8.55 5.51 16.55 8.74 5.60

(16.04, 16.25) (8.42, 8.68) (5.36, 5.66) (16.47, 16.63) (8.61, 8.87) (5.42, 5.78)
Vu 15.91 8.45 5.47 16.00 8.49 5.49

yOnly the subproblem corresponding to no short sales needs to be solved numerically. The subproblems corresponding to (i) no
constraints and (ii) no-borrowing and no-short-sales constraints can both be solved analytically.
zExcept for how we computed the upper bound associated with the static strategy as mentioned earlier.
xWhile the GBH strategy could be used to compute a valid upper bound for the value function of the optimal constrained dynamic
strategy, we do not bother to do so as the upper bound would not correspond to any feasible suboptimal strategy.
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corresponding upper bounds on the optimal dynamic

trading strategy. As demonstrated by HKW, the myopic

strategy outperforms the static strategy in that the former

has a higher lower bound. Perhaps surprisingly, however,

we see that the upper bound generated by the static

strategy is now superior, i.e. lower, than the upper bound

generated by the myopic strategy. This occurs because the

static upper bound is generated using both terms on the

right-hand side of (23), whereas the myopic upper bound

used only the first term. In fact, HKW showed that in the

case of incomplete markets, the static and myopic upper

bounds will coincide when they are both generated using

only the first term of (23), so it is not surprising that the

static upper bound is superior when calculated using

both terms. Haugh and Jain (2007), however, show that

the myopic upper bound does marginally better than the

static bound when the second term is estimated and

included using Monte-Carlo techniques.
Confirming the results of corollary 5.2, we see that the

GBH strategy always outperforms the optimal static

strategy, significantly so in the cases of parameter sets 1

and 3. It is no surprise that the optimal myopic strategy

generally outperforms the optimal GBH strategy as the

former strategy can take explicit advantage of the

variability in the state variable, Xt. However, it is quite

surprising that in the case of the third parameter set,

we see that the GBH strategy outperforms the myopic

strategy when T¼ 10 and �¼ 3 or �¼ 5. The upper bound

Table 4. No short sales and no borrowing. The four parameter sets are defined in table 1. The rows marked LBs, LBm and V gbh

report estimates of the expected utility achieved by using the static, myopic and GBH portfolio strategies, respectively.
Expected utility is reported as a continuously compounded certainty equivalent return. Approximate 95% confidence intervals are
reported in parentheses. The rows marked UBs and UBm report the estimates of the upper bound on the true value function.

T¼ 5 T¼ 10

�¼ 1.5 �¼ 3 �¼ 5 �¼ 1.5 � ¼ 3 �¼ 5

Parameter set 1
LBs 7.38 4.63 3.27 7.56 4.84 3.42

(7.36, 7.40) (4.62, 4.64) (3.27, 3.28) (7.55, 7.57) (4.83, 4.85) (3.42, 3.43)
UBs 8.93 7.36 6.88 9.21 7.94 7.62

(8.91, 8.96) (7.34, 7.39) (6.85, 6.90) (9.19, 9.23) (7.93, 7.96) (7.60, 7.63)
LBm 8.09 5.57 3.91 8.35 5.99 4.22

(8.07, 8.11) (5.56, 5.59) (3.89, 3.92) (8.34, 8.36) (5.98, 6.00) (4.21, 4.23)
UBm 8.15 5.84 4.18 8.45 6.48 4.77

(8.12, 8.18) (5.79, 5.90) (4.08, 4.28) (8.43, 8.47) (6.42, 6.54) (4.64, 4.94)
Vgbh 8.36 5.29 3.75 8.68 5.83 4.22

(8.31, 8.41) (5.24, 5.35) (3.70, 3.80) (8.65, 8.72) (5.78, 5.87) (4.17, 4.27)
Parameter set 2
LBs 6.53 3.68 2.59 6.51 3.67 2.58

(6.51, 6.56) (3.67, 3.70) (2.58, 2.60) (6.49, 6.53) (3.66, 3.68) (2.57, 2.58)
UBs 9.56 6.84 5.57 9.69 6.95 5.66

(9.53, 9.60) (6.80, 6.88) (5.52, 5.61) (9.66, 9.72) (6.91, 6.98) (5.62, 5.70)
LBm 7.88 4.85 3.30 7.91 4.87 3.31

(7.86, 7.90) (4.84, 4.87) (3.29, 3.31) (7.90, 7.93) (4.86, 4.88) (3.30, 3.32)
UBm 7.93 4.98 3.42 7.95 5.01 3.44

(7.89, 7.96) (4.93, 5.03) (3.37, 3.48) (7.93, 7.98) (4.97, 5.04) (3.39, 3.49)
Vgbh 6.55 3.70 2.60 6.53 3.69 2.60

(6.51, 6.59) (3.68, 3.72) (2.59, 2.62) (6.50, 6.56) (3.68, 3.71) (2.59, 2.61)
Parameter set 3
LBs 10.02 6.75 4.61 10.21 7.11 4.87

(10.00, 10.04) (6.74, 6.76) (4.60, 4.62) (10.20, 10.22) (7.10, 7.12) (4.86, 4.87)
UBs 10.51 8.71 7.91 10.75 9.32 8.78

(10.48, 10.54) (8.67, 8.74) (7.87, 7.94) (10.73, 10.77) (9.30, 9.34) (8.76, 8.80)
LBm 10.17 7.65 5.35 10.37 8.18 5.80

(10.15, 10.18) (7.63, 7.66) (5.33, 5.36) (10.36, 10.38) (8.17, 8.19) (5.79, 5.81)
UBm 10.23 8.05 5.85 10.47 8.88 6.79

(10.20, 10.26) (7.98, 8.11) (5.69, 6.01) (10.46, 10.49) (8.82, 8.94) (6.34, 7.25)
Vgbh 15.74 9.64 6.57 16.23 10.75 7.63

(15.65, 15.82) (9.53, 9.76) (6.46, 6.70) (16.13, 16.34) (10.63, 10.88) (7.51, 7.76)
Parameter set 4
LBs 9.21 5.28 3.55 9.19 5.27 3.54

(9.18, 9.23) (5.27, 5.30) (3.54, 3.56) (9.18, 9.21) (5.25, 5.28) (3.53, 3.55)
UBs 10.23 7.60 5.74 10.30 7.67 5.80

(10.19, 10.26) (7.54, 7.65) (5.68, 5.80) (10.27, 10.32) (7.63, 7.72) (5.74, 5.85)
LBm 9.51 6.07 4.05 9.51 6.08 4.06

(9.49, 9.53) (6.05, 6.09) (4.04, 4.06) (9.50, 9.53) (6.06, 6.09) (4.05, 4.07)
UBm 9.54 6.20 4.19 9.55 6.22 4.20

(9.51, 9.57) (6.15, 6.26) (4.12, 4.25) (9.52, 9.57) (6.17, 6.26) (4.14, 4.26)
Vgbh 13.17 7.11 4.66 13.13 7.10 4.66

(13.11, 13.23) (7.07, 7.14) (4.64, 4.69) (13.09, 13.18) (7.06, 7.13) (4.63, 4.68)
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computed from the GBH strategy is generally comparable

to the upper bound generated from the myopic strategy

despite the fact that the myopic strategy is usually

significantly better than the GBH strategy. This is

probably a reflection of our failure to include the

second term on the right-hand side of (23) when estimat-

ing the myopic upper bound.

6.2. No-short-sales and no-borrowing constraints

Table 4 reports the results for when short sales and
borrowing are prohibited. We see that the performance of
the static and myopic strategies often deteriorates consid-
erably. This is particularly true for parameter sets 3 and 4
and, not surprisingly, is more pronounced for lower values
of risk aversion. Of particular interest is how the GBH
strategy performs in relation to the myopic strategy. We
see in the cases of parameter sets 1 and 2 that the myopic
strategy still outperforms the GBH strategy, though not by
a significant amount. In the case of parameter sets 3 and 4,
however, the GBH portfolio significantly outperforms the
myopic strategy. The out-performance is on the order of
four or five percentage points per annum in the case of
�¼ 1.5, and one to two percentage points otherwise. This
is significant and it is clear that constrained investors
would easily prefer to purchase the optimal GBH strategy
rather than implementing a dynamic constrained strategy.
Note that in table 4 we do not display an upper bound
generated by the GBH strategy.While it is straightforward
to construct such an upper bound, we emphasize again
that there does not exist a self-financing trading strategy
that generates the GBH terminal wealth when trading
constraints are imposed.

6.3. No-short-sales constraints

Table 5 reports the results when only a no-short-sales
constraint is imposed. For this problem, the quadratic
optimization problem that we must solve at each
discretization point on each simulated path needs to be
solved numerically. This is in contrasty to the earlier two
cases where the quadratic optimization problem had an
analytic solution. Due to the increased computational
burden when solving for the upper bound, we only
consider T¼ 5 in this case.

We draw the same conclusions as we did for the case
where no-short-sales and no-borrowing constraints were
imposed. The myopic strategy still outperforms the GBH
strategy using parameter sets 1 and 2 but the GBH strategy
outperforms under parameter sets 3 and 4. The extent of
the GBH strategy’s out-performance (one or two percent-
age points per annum) is not as great since the myopic
strategy is now less constrained. However, investors who
are free to borrow but are still constrained by the inability
to short-sell would still clearly prefer to purchase the GBH
portfolio when parameter sets 3 or 4 prevail.

6.4. Comparing the ‘optimal’ static strategies

While not the focus of this paper, it is interesting to note
the difference in performance between �static and �static_opt,
as defined in sections 3.2 and 5, respectively. Recall that
�static is the optimal strategy of an investor who assumes
that the moments of instantaneous returns are constant
through time and equal to their long-term average. Such an
investor will select this strategy as his optimal strategy.

Table 5. No short sales. The four parameter sets are defined in
table 1 and the problem horizon is T¼ 5 years. The rows marked
LBs, LBm and Vgbh report the estimates of the expected utility
achieved by using the static, myopic and GBH portfolio
strategies, respectively. Expected utility is reported as a
continuously compounded certainty equivalent return.
Approximate 95% confidence intervals are reported in par-
entheses. The rows marked UBs and UBm report the estimates of

the upper bound on the true value function.

�¼ 1.5 �¼ 3 � ¼ 5

Parameter set 1
LBs 7.46 4.62 3.26

(7.43, 7.49) (4.60, 4.63) (3.25, 3.27)
UBs 9.98 6.01 4.16

(9.91, 10.05) (5.90, 6.13) (4.00, 4.33)
LBm 9.04 5.58 3.89

(8.96, 9.12) (5.53, 5.62) (3.86, 3.92)
UBm 9.14 5.77 4.04

(9.02, 9.27) (5.56, 5.98) (3.75, 4.33)
Vgbh 8.36 5.29 3.75

(8.31, 8.41) (5.24, 5.35) (3.70, 3.80)
Parameter set 2
LBs 6.52 3.68 2.59

(6.47, 6.56) (3.66, 3.70) (2.57, 2.60)
UBs 10.65 5.75 3.72

(10.56, 10.73) (5.65, 5.85) (3.62, 3.82)
LBm 8.92 4.86 3.30

(8.82, 9.01) (4.81, 4.91) (3.26, 3.33)
UBm 9.01 4.98 3.38

(8.87, 9.15) (4.82, 5.14) (3.20, 3.56)
Vgbh 6.55 3.70 2.60

(6.51, 6.59) (3.68, 3.72) (2.59, 2.62)
Parameter set 3
LBs 11.14 6.74 4.61

(11.11, 11.18) (6.72, 6.76) (4.59, 4.62)
UBs 14.06 8.48 5.85

(13.97, 14.14) (8.33, 8.64) (5.62, 6.09)
LBm 12.80 7.82 5.34

(12.71, 12.89) (7.77, 7.88) (5.30, 5.38)
UBm 12.99 8.22 5.73

(12.83, 13.14) (7.95, 8.49) (5.35, 6.11)
Vgbh 15.74 9.64 6.57

(15.65, 15.82) (9.53, 9.76) (6.46, 6.70)
Parameter set 4
LBs 9.69 5.29 3.56

(9.64, 9.74) (5.26, 5.32) (3.54, 3.58)
UBs 13.55 7.26 4.71

(13.46, 13.65) (7.14, 7.37) (4.59, 4.84)
LBm 11.36 6.10 4.04

(11.25, 11.47) (6.04, 6.16) (4.00, 4.08)
UBm 11.47 6.21 4.09

(11.30, 11.63) (6.02, 6.41) (3.86, 4.33)
Vgbh 13.17 7.11 4.66

(13.11, 13.23) (7.07, 7.14) (4.64, 4.69)

yWe have not discussed the specific details of these quadratic optimization problems in this paper. HKW describes these problems in
some detail and how the precise problem depends on the portfolio constraints that are imposed.
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On the other hand, �static_opt is chosen by the investor who
knows the true price dynamics but is forced to select a
static trading strategy. It is clear that E0[U(�static_opt)]�
E0[U(�static)]. The extent to which �static_opt outperforms
�static can be seen in table 6 where we consider onlyy the
incomplete market case. It is interesting to note that in the
cases of parameter sets 2 and 4 there is practically no
difference between the two strategies. This is not true of
parameter sets 1 and 3, however, where the difference can
range from 12 basis points per annum to 1.2% per annum.

7. Conclusions and further research

For a particular class of security price dynamics, we
obtained a closed-form solution for the terminal wealth
and expected utility of the classic constant proportion or
static trading strategy. We then used this solution to study
in further detail the portfolio evaluation approach recently
proposed by Haugh, Kogan and Wang (2006) (HKW). In
particular, we solved for the more theoretically satisfying
upper bound on the optimal value function that was
originally proposed by HKW. We also used this result to
show that the upper bound could be minimized analyti-
cally over the class of static trading strategies.

For the same class of security price dynamics, we solved
for the optimal GBH strategy and showed that in some
circumstances it is comparable, in terms of expected utility,
to the optimal dynamic trading strategy. Moreover, when
the optimizing agent faces dynamic trading constraints
such as no-short-sales or no-borrowing constraints, the
optimal GBH strategy can often significantly outperform
the optimal constrained dynamic trading strategy. This has
implications for investors when: (i) a dynamic trading
strategy is too costly or difficult to implement in practice
and (ii) when the optimal GBH portfolio can be purchased
from an unconstrained agent. We also concluded that the

optimal GBH strategy is superior to �static in that it

achieves a higher expected utility.
There are several possible directions for future research.

First, it would be interesting to extend the analysis to

other security price dynamics. Are there other price

processes, for example, where moderately risk averse

investors with long time horizons might prefer the GBH

strategy to the optimal myopic strategy? We saw this to be

the case with parameter set 3, even when dynamic trading

constraints were not imposed.
Another direction for future research is to continue the

study of duality methods for assessing suboptimal port-

folio strategies that are easy to implement in practice. For

example, instead of trying to solve for a dynamic trading

strategy we might instead define a set of parameterized

strategies with a view to optimizing over this set. This

would involve a static optimization problem and therefore

be much easier to solve. Dual methods would then play

the role of determining whether the optimal parameter-

ized strategy is far from the global optimum. A related

application of the duality method is in determining the

value of information. For example, as a generalization of

the GBH strategies we could allow any wealth that is a

function of the entire paths of the traded securities only.

Such a wealth, W gbh path
T say, could not depend explicitly

on the paths of the predictive processes, Xt. The difference

between the expected utility of the global optimal strategy

and the optimal W gbh path
T could then be interpreted as

representing the value of observing the evolution of Xt.

This problem is also related to filtering problems where Xt

is an unobserved latent variable. Clearly the dual method

could be useful in investigating these issues.
Finally, it would be interesting to develop primal-dual

style algorithms for finding good suboptimal policies.

The work of Haugh et al. (2006) is a basic attempt in

this direction. They use approximate dynamic

Table 6. Comparison of optimal static strategies in incomplete markets. The four parameter sets are defined in table 1.
The rows marked LB(�static) report the expected utility achieved by the static strategy as defined by equation (8).
The rows marked LB(�static_opt) report the expected utility achieved by the true optimal static strategy as defined in

section 5. Expected utility is reported as a continuously compounded certainty equivalent return.

T¼ 5 T¼ 10

�¼ 1.5 �¼ 3 � ¼ 5 �¼ 1.5 �¼ 3 �¼ 5

Parameter set 1
LB(�static) 7.49 4.63 3.27 7.69 4.84 3.42
LB(�static_opt) 7.61 4.93 3.55 7.90 5.36 3.93

Parameter set 2
LB(�static) 6.54 3.69 2.59 6.52 3.67 2.58
LB(�static_opt) 6.55 3.70 2.60 6.53 3.68 2.59

Parameter set 3
LB(�static) 14.66 8.58 5.73 15.06 8.97 6.01
LB(�static_opt) 14.94 9.26 6.37 15.51 10.19 7.21

Parameter set 4
LB(�static) 13.16 7.09 4.66 13.16 7.09 4.66
LB(�static_opt) 13.16 7.09 4.66 13.16 7.09 4.66

yWe could also have reported results for the cases where portfolio constraints are imposed. The out-performance would be less
noticeable in these cases.
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programming (ADP) methods to construct trading strat-
egies that are then evaluated using the dual-based portfolio
evaluation approach. Their algorithm does not constitute a
primal-dual algorithm, however, in that the dual formu-
lation is not used to construct the trading strategy. It is
worth noting that Brandt et al. (2005) were the first to use
ADP methods to develop good dynamic trading strategies
but their algorithm does not extend easily to problems with
portfolio constraints. More recently, Brown et al. (2007)
generalized the dual approach of Rogers (2003a) and
Haugh and Kogan (2004) for solving optimal stopping
problems. Their dual approach is based on information
relaxations and it can be used to find approximate
solutions and bounds to general finite-horizon discrete-
time dynamic programs. We believe these methods could
be a particularly profitable direction for future research
into dynamic portfolio optimization problems.
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Appendix A: The static strategy and proof of

proposition 5.1

Proof (proof of proposition 5.1): Using (1) and applying
Itô’s lemma to ln PT we obtain

lnPT ¼ lnP0 þ

Z T

0

�PðXtÞ �
1

2
diagð�P�>P Þ

� �
dt

þ

Z T

0

�P dB
P
t : ðA1Þ
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The wealth dynamics for a static trading strategy, �, are
given by (2) with �t replaced by �. A simple application of
Itô’s lemma to lnWT then implies

WT ¼W0 exp

Z T

0

ðð1� �>1Þrþ �>�PðXtÞÞdt

�
�
1

2
ð�>�P�>P�ÞTþ �

>�PB
P
T

�
: ðA2Þ

Substituting (A1) into (A2) we then obtain

WT ¼W0 exp ð1� �
>1ÞrTþ

1

2
�>ðdiagð�P�>P Þ

�
��P�>P�ÞTþ �

> ln
PT

P0

� ��
, ðA3Þ

as desired. œ

Under the price dynamics assumed in section 6, it is easy

to see that under the physical probability measure, P, the
terminal security prices, PT, are multivariate log-normally
distributed. In particular, Y :¼ ln(PT)
N(�Y,�Y) where
�Y and �Y are given by equations (B6) and (B7),
respectively. It therefore follows that WT in (A3) is also
log-normally distributed. As a result, assuming CRRA

utility it is straightforward to obtain an analytic expres-
sion for the value function corresponding to any static
strategy as well as its derivatives. These terms can then be
used to obtain an upper bound on the value function for
the optimal dynamic trading strategy as described in
section 4 and, in further detail, in HKW.

Appendix B: The GBH strategy and value function

We now expand the steps outlined in section 3.4 special-
izing to the dynamics of section 6.

B.1. Solving the SDE

The security price dynamics are as specified in (26) so that
Pt is a three-dimensional price process and Xt is a scalar
state variable process. The market-price-of-risk process,

�t, is a four-dimensional process satisfying the first threey
equations of

�P�t ¼ ð�0 þ Xt�1 � r1Þ: ðB1Þ

The corresponding Q-Brownian motion satisfies

dBP
t ¼ dB

Q
t � �t dt: ðB2Þ

The first three components of �t are uniquelyz determined
by (B1) and the fourth component, �ð4Þt , is unconstrained.
Under any risk-neutral measure, Q, defined by (B1) and
(B2), the security price processes satisfy
dPt ¼ Pt½r dtþ�P dB

Q
t �. It immediately follows that

ln(PT)
N(�Q,�Q) under any risk-neutral measure,
Q, where

�Q ¼ lnP0 þ r�
1

2
diagð�P�>P Þ

� �
T,

�Q ¼ �PI�>PT:

ðB3Þ

The state variable, Xt, is easily seen to satisfy

Xt ¼ X0 e
�kt þ e�kt

Z t

0

eks�X dBP
s , ðB4Þ

with

E0½Xt� ¼ X0 e
�kt,

VarðXtÞ ¼
�X�>X
2k
ð1� e�2ktÞ:

ðB5Þ

Setting Yt :¼ lnPt, (B4) and a standard application of
Itô’s lemma then yield

Yt ¼ Y0 þ

Z t

0

�0 �
1

2
diagð�P�>P Þ þ �1X0 e

�ks

� �
ds

þ

Z t

0

�P dB
P
s þ

Z t

0

�1
ð1� ekðs�tÞÞ

k
�X dBP

s :

Under the true data generating measure, P, it therefore
follows that YT¼ lnPT
N(�Y, �Y), where

�Y¼ �0�
1

2
diagð�P�>P Þ

� �
Tþ lnP0þ

�1X0

k
ð1� e�kTÞ,

ðB6Þ

�Y¼ ð�P�>P ÞTþ�1�
>
1 �X�>X

T

k2
þ
1�e�2kT

2k3
�
2ð1� e�kTÞ

k3

� �
þð�1ð�P�>XÞ

>
þð�P�>XÞ�

>
1 Þ

T

k
�
ð1� e�kTÞ

k2

� �
: ðB7Þ

In particular, the PDF of PT under P is multivariate
log-normal and satisfies

f PP1,P2,P3
ðb1, b2, b3Þ ¼

1

ð
Q3

i¼1 biÞð2pÞ
3=2
j�Yj

1=2

� exp �
1

2
ðln b� �YÞ

>��1Y ðln b� �YÞ

� �
:

PT has the same density under Q with the obvious
replacement of �Y and �Y with �Q and �Q, respectively.

B.2. Computing the conditional state price density

A state price density (SPD) process, �t, satisfies

�t ¼ e�rt
dQ

dP
¼ e�rt exp �

Z t

0

�s dB
P
s �

1

2

Z t

0

k�sk
2 ds

� �
,

ðB8Þ

where �s is any market price-of-risk process satisfying
(B1). We need to compute the conditional state price
density, �bt , where we condition on the terminal security

ySince there are three traded securities and the fourth ‘security’, Xt, is not traded.
zSee table 1 where we assume, without loss of generality, that �ð4Þt does not influence the first three rows of �P.
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prices. In particular, we wish to solve for the time T

conditional state price density

�bT ¼ E0½�T j P
ðiÞ
T ¼ bi, i ¼ 1, . . . ,N �: ðB9Þ

It is worth mentioning that while there are infinitely many

SPD processes, �t, corresponding to each solution of (B1),

it is easy to check if we can use any such process on the

right-hand side of (B9) and still obtain the same condi-

tional state price density, �bT. Using (B8) we can confirm it

satisfies

�bT ¼
e�rTf

Q
P1,P2,P3

ðb1, b2, b3Þ

f PP1,P2,P3
ðb1, b2, b3Þ

¼
e�rTj�Yj

1=2

j�Qj
1=2

exp
1

2
ððln b� �YÞ

>��1Y ðln b� �YÞ

�
�ðln b� �QÞ

>��1Q ðln b� �QÞÞ

�
:

B.3. Computing the optimal GBH wealth

We then use the static martingale approach to solve for

the optimal GBH strategy assuming CRRA utility.

In particular, we solve

V gbh
0 ¼ sup

WT

E0
W1��

T

1� �

" #
, subject to E0½�

b
TWT� ¼W0:

ðB10Þ

Because we use the conditional state price density in

(B10), we do not need to explicitly imposey the

�(PT)-measurability of WT as a constraint as this will be

automatically satisfied. The problem in (B10) can be

solved using standard static optimization techniques and

we obtain

W gbh
T ¼

W0ð�
b
TÞ
�1=�

E0½ð�
b
TÞ
ð��1Þ=�

�
: ðB11Þ

We call the trading strategy that replicates W gbh
T the

generalized buy-and-hold (GBH) trading strategy.

We also immediately obtain

V gbh
0 ¼

W1��
0

1� �
ðE0½ð�

b
TÞ
ð��1Þ=�

�Þ
� : ðB12Þ

While requiring some computation, it is straightforward

to show that the expectation in (B12) is given by

E0½ð�
b
TÞ
ð��1Þ=�

� ¼ exp �rT
ð� � 1Þ

�
�



2

� �
�
j�Yj

j�Qj

� �ð��1Þ=ð2�Þ ffiffiffiffiffiffiffiffiffiffi
j�j

j�Yj

s
, ðB13Þ

where �Q and �Y are given in equations (B3) and (B7),
respectively. The parameters 
 and � are solutions to

��1 ¼ ð1� 2aÞ��1Y þ 2a��1Q ,

�>��1 ¼ ð1� 2aÞ�>Y��1Y þ 2a�>Q��1Q ,


 ¼ ð1� 2aÞ�>Y��1Y �Y þ 2a�>Q��1Q �Q � �
>��1�,

ðB14Þ

where a :¼ (�� 1)/(2�).

B.4. Determining the value function at all
intermediate times

It is straightforward to generalize (B12), (B13) and (B14)
to obtain

V gbh
t ¼ Et

ðWTÞ
1��

1� �

� �
ðB15Þ

¼
W1��

0

ð1� �Þ
exp
�
t þ 
ð1� �Þ

2
þ rTð1� �Þ

� �
�
j�tj

j�tYj

� �1=2
j�j

j�Qj

� �ð��1Þ=2
, ðB16Þ

where

�
�1

t ¼ ��1tY � 2a��1Y þ 2a��1Q ,

�T
t �
�1

t ¼ �
T
tY��1tY � 2a�T

Y��1Y þ 2a�T
Q��1Q ,


t ¼ �
T
tY��1tY �tY � 2a�T

Y��1Y �Y þ 2a�T
Q��1Q �Q

� �T
t �
�1

t �t,

and where �tY and �tY are the mean vector and
covariance matrix, respectively, of lnPT under P condi-
tional on F t. In particular, lnPT
N(�tY, �tY) where �tY

and �tY are given by (B6) and (B7), respectively, but
with T, P0 and X0 replaced by (T� t), Pt and Xt,
respectively.

B.5. Determining the replicating trading strategy

We now briefly describe how to obtain the replicating

strategy for the optimal GBH wealth, W gbh
T , given

by (B11). The martingale property of a state-price density
process implies

�tWt ¼ Et½�TWT� ¼
W0Et½�Tð�

b
TÞ
�1=�
�

E0½ð�
b
TÞ
ð��1Þ=�

�
: ðB17Þ

Using (B1), (B8) and (B9) to substitute for �bT and �T in
(B17), we can evaluate the expectations in (B17) to obtain

W gbh
t ¼ exp rtþ




2
�

t
2

� � ffiffiffiffiffiffiffiffiffiffiffi
j�tj

j�tQj

s ! ffiffiffiffiffiffiffiffiffiffi
j�j

j�Qj

s !
, ðB18Þ

yNote that the more usual form of the constraint in (B10) is that E0[�TWT]¼W0 where �T is the time T value of a particular state
price density process. If we use this constraint, then we need to explicitly impose the �(PT)-measurability of WT. In that case,
however, while there are infinitely many such SPD processes, they all satisfy E0½�TWT� ¼ E0½E½�TWT j PT�� ¼ E0½�

b
TWT� when WT

is �(PT)-measurable. We therefore obtain (B10) and no longer need to explicitly impose the �(PT)-measurability of WT.
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where �t and 
t satisfy

��1t ¼
��1Y

�
�

��1Q

�
þ��1tQ ,

�>t �t
�1¼

�>Y��1Y

�
�
�>Q�Q

�1

�
þ�>tQ��1tQ ,


t¼
�>Y��1Y �Y

�
�
�>Q��1Q �Q

�
þ�>tQ�tQ

�1�tQ��
>
t �t

�1�t:

ðB19Þ

The terms �tQ and �tQ appearing in (B19) are the mean

vector and variance–covariance matrix of lnPT under Q,

conditional on time t information. In particular, given

time t information, we have lnPT
N(�tQ,�tQ) under

any risk-neutral measure, Q, where

�tQ ¼ lnPt þ r�
1

2
diagð�P�>P Þ

� �
ðT� tÞ,

�tQ ¼ �PI�
>
P ðT� tÞ:

We can then apply Itô’s lemma to W gbh
t ¼

f ðt,P
ð1Þ
t ,P

ð2Þ
t ,P

ð3Þ
t Þ to obtain

dWt ¼
@f

@t
þ
Xj¼3
j¼1

Xi¼3
i¼1

@2f

@Pi
t @P

j
t

" #
dtþ

@f

@Pð1Þt
dP
ð1Þ
t

þ
@f

@Pð2Þt
dP
ð2Þ
t þ

@f

@Pð3Þt
dP
ð3Þ
t : ðB20Þ

From (B18), we can see that W gbh
t depends on Pt only

through 
t which in turn depends on Pt through �tQ

and �t. Hence,

@W gbh
t

@PðiÞt
¼

@f

@PðiÞt
¼
�W gbh

t

2

@
t

@PðiÞt
: ðB21Þ

If �ðiÞt is the proportion ofW gbh
t invested in the ith security

at time t, then a standard argument using (1) and (2)

implies that �ðiÞt is the coefficient of dP
ðiÞ
t =P

ðiÞ
t in the

dynamics of dWt/Wt. Using (B20) and (B21) we therefore

obtain

�ðiÞt ¼
�P
ðiÞ
t

2

@
t

@PðiÞt
: ðB22Þ

B.6. Compute lower and upper bounds on true optimal
value function

When the agent does not face dynamic trading constraints

then the expected utility, V gbh
0 , can be attained by

following the trading strategy outlined above in equation

(B22). V gbh
0 , which we have obtained in closed form, is

therefore a lower bound on the optimal value function

associated with the true optimal dynamic trading strategy.

The same strategy and its associated value function
process, V gbh

t , can then be used to obtain an upper
bound on the optimal value function. This is done by:
(i) simulating the SDEs for the price processes, Pt, the
state variable process, Xt, and the wealth process, Wt; and
(ii) following the algorithm outlined in HKW and
summarized in section 4.

Appendix C: Optimizing the upper bound

In this appendix we determine the static strategiesy that
minimize the upper bound assuming the samez price
dynamics of section 6. We consider only the case of
incomplete markets here and the minimum is taken over
the set of all static strategies. Interestingly, we will see that
the ‘optimal’ static strategy, �static, given by equation (8),
does not minimize the upper bound. This of course is not
too surprising. After all, and as we mentioned in section 5,
this static strategy is not the true optimal static strategy.

As we saw in section 4, the value function (17) in the
fictitious market provides an upper bound for the optimal
value function of the original problem. In order to
evaluate (17) we require the state-price density process,
�ð	Þt , in the fictitious market and the corresponding market
price-of-risk process, �ð	Þt . We compute �ð	Þt by starting
with the candidate market price-of-risk process, e�t, as
determined by (23). When we employ a static trading
strategy, �, then e�t can be determined analytically using
proposition 5.1. In particular, we obtain

e�t ¼ ��>P� �
�>X
k
ð1� �Þð1� expð�kðT� tÞÞ�>�1: ðC1Þ

In the case of incomplete markets, i.e. our base case with
no trading constraints, the risk-free rate process and �ð	Þt
actually satisfyx

r
ð	Þ
t ¼ r,

�ð	Þt ¼
�t,i, for i ¼ 1, 2, 3,

e�t,i, for i ¼ 4,

(
ðC2Þ

where

�t ¼ ��1P ð�0 þ Xt�1 � rÞ

is the market price-of-risk process in the original problem.
Note that �ð	Þt is a (4� 1) vector and that it depends upon
the static strategy, �, only through its fourth component.
Recalling that �4¼ 0 and that the first three entries in the
fourth column of �p are zero, (C1) implies that this fourth
component satisfies

�ð	Þt,4 ¼ �
�>Xð4Þ

k
ð1� �Þð1� expð�kðT� tÞÞÞ�>�1: ðC3Þ

yAs we shall see, there are infinitely many strategies that minimize the upper bound.
zRecall from section 6 that the drift of the asset returns, �(Xt), satisfies �(Xt)¼�0þXt�1 where �0 and �1 are 4� 1 vectors. In
addition, � is also a 4� 1 vector with the fourth component set to 0.
xRecall that e�t is not necessarily an element of the admissible set D as defined in section 4. We need to solve a simple quadratic
optimization problem with linear constraints to obtain the admissible process, �ð	Þt , of equation (C2). See HKW for further details.
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The upper bound given by (17) then satisfies

UB ¼
W1��

0

1� �
E0½�

ð	Þ
T

ð��1Þ=�
�
�

¼
W1��

0

1� �
E0 exp

� � 1

�
�rT�

1

2

Xi¼4
i¼1

Z T

0

ð�ð	Þt,i Þ
2 dt

  "

�
Xi¼4
i¼1

Z T

0

�ð	Þt,i dB
ðiÞ
t

!!#�
: ðC4Þ

The first-order conditions for minimizing the upper
bound with respect to �j can be expressed as

E0
@�ð	ÞT

ð��1Þ=�

@�j

" #

¼
ð��1Þ

�
E0 �ð	ÞT

ð��1Þ=�
Z T

0

�ð	Þt,4
@�ð	Þt,4
@�j

dtþ

Z T

0

@�ð	Þt,4
@�j

dB
ð4Þ
t

 !" #
¼ 0, ðC5Þ

for j¼ 1, 2, 3. This condition simplifies to

E0
@�ð	ÞT

ð��1Þ=�

@�j

" #
¼ E0

�
�ð	ÞT
ð��1Þ=�

�Z T

0

�>Xð4Þ

k
ð1� �Þ

� ð1� expð�kðT� tÞÞ2�>�1 dt

�

Z T

0

ð1� expð�kðT� tÞÞ dB
ð4Þ
t

��
¼ 0,

ðC6Þ

where the right-hand side is independent of j. This implies
that the three first-order conditions are therefore identical

and can be reexpressed as

�>�1 ¼
E0 �

ð	Þ
T

ð��1Þ=� R T
0 ð1� expð�kðT� tÞÞÞdB

ð4Þ
t

h i
Tþ 1�expð�2kTÞ

2k �
2ð1�expð�kTÞÞ

k


 �
�>X ð4Þð1��Þ

k


 �
E0½�

ð	Þ
T

ð��1Þ=�
�

8><>:
9>=>;

:

ðC7Þ

Any static strategy that minimizes the upper bound must
satisfy (C7). As this is a single linear equation in three
unknowns we conclude that there are infinitely many
static strategies that minimize, over the class of static
strategies, the upper bound on the optimal value function.
For example, it is possible to construct a static strategy
that invests in only one of the risky assets and that
satisfies (C7). Such a strategy would minimize the upper
bound, though it could, in general, generate a poor lower
bound. Another strategy that minimizes the upper bound
is a suitably scaled version of �static, where the scaling is
required so that (C7) is satisfied.

In our numerical experiments it was often necessary,
for example, to scale �static by an additional 10% before
(C7) was satisfied. However, it is worth mentioning that
despite the substantial scaling required to satisfy (C7), the
upper bound generated by �static was typically within one
or two basis points per annum of the optimal upper
bound. Moreover, we never saw this difference exceeding
10 basis points. We will not report any explicit results
comparing the optimal upper bound with the upper
bound generated by �static as the two bounds are close in
practice.
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