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Abstract

We study Cournot competition among firms in a multi-market framework where each of

the firms face different budget / capacity constraints. We assume independent linear inverse

demand functions for each market, and completely characterize the resulting unique equilibrium.

Specifically, we introduce the notions of augmented and cutoff budgets for firms and markets,

respectively. We show, for example, that firm i operates in market j if and only if firm i’s

augmented budget is greater than market j’s cutoff budget. We also study the properties of the

equilibrium as a function of the number of firms N while keeping the aggregate budget fixed.

In a numerical study, we show that increasing N increases the total output across all markets

although this monotonicity can fail to hold at the individual market level. Similarly, we show

that that while the firms’ cumulative payoff decreases in N , the consumer surplus and social

surplus increase in N .

Keywords: Cournot competition, non-cooperative games, heterogeneous products, heterogeneous

firms, capacity constraints.



1 Introduction

In this note we study a model of Cournot competition (Cournot, 1838) in a multi-firm multi-market

environment in which each of the firms face different budget or capacity constraints. (We will use

budget and capacity, and market and product interchangeably throughout.) The firms compete

by choosing what quantities to produce and prices are then determined so as to clear the market1.

In this setting, we completely characterize the resulting unique Cournot market equilibrium and

investigate the effects that these capacity constraints have on the equilibrium outcome, including

total output across markets, firms’ payoffs and social welfare.

From a modeling standpoint, we adopt one of the most commonly used frameworks in the Cournot

literature with independent linear inverse demand functions for each market and linear cost func-

tions. At the same time we consider a fundamental – and curiously unexplored – extension of this

standard model by explicitly incorporating firm-level budget (or capacity) constraints that limit the

production decisions of the firms and couple the equilibrium outcome across markets. This novel

feature of our model not only brings our analysis closer to reality but also produces new insights

on the nature of the resulting Cournot equilibrium. For instance, it is no longer true that every

firm operates in every market or that there is a positive output on every market in equilibrium.

For example, this market concentration is commonly observed in the airline industry where compe-

tition and available seat capacity constraints force airlines to operate only on high-demand routes

to ensure profitability (e.g., Flores-Fillol, 2009) leading to decreased connectivity or frequency on

less profitable routes (e.g., Mazzeo, 2003, Gil and Kim, 2021). Additionally, by explicitly incor-

porating capacity and budget constraints into the market equilibrium, we provide a more nuanced

analysis of the competitive pressures influencing firms’ incentives for mergers and acquisitions (see,

for example, Werden et al. (1991) and Das (2019) for a related discussion in the context of airline

merges).

To formalize these ideas we introduce the notions of augmented and cutoff budgets for firms and

markets, respectively. Loosely speaking, the augmented budget of a firm measures its level of

competitiveness vis-à vis the other firms and determines in which market the firm will operate,

i.e., where it will allocate a positive amount of its budget. On the other hand, the cutoff budget

of a market is the minimum amount required for investing in all other markets to ensure that this

particular market will operate in equilibrium. (We refer the reader to Definition 3.1 for precise

mathematical definitions and Appendix A for additional intuition regarding these concepts.) To

the best of our knowledge these are new concepts that have not been previously discussed in the

literature and they allow us to capture in a parsimonious way the intricate interactions among firms

and markets. In particular, we show that in equilibrium firm i operates in market j if and only if

firm i’s augmented budget is greater than market j’s cutoff budget. We also derive monotonicity

results on the equilibrium market outputs with respect to both firm size (as measured by budget

or capacity) and market size. We also study the properties of the equilibrium as a function of

the number of firms N while keeping the aggregate budget fixed. In a numerical study, we show

that increasing N increases the total output across all markets although this monotonicity can fail

to hold at the individual market level. In other words, increasing competition can lead to some

markets shutting down in equilibrium. Similarly, we show that while the firms’ cumulative payoff

1This form of competition is more suitable for industries where production (or production capacities) must be
planned in advance, e.g. semiconductor manufacturing, electricity markets.
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decreases in N , the consumer surplus and social surplus increase in N . While not the main focus

of this note, we also consider non-linear inverse-demand functions. We show multiple equilibria

are possible when they are piecewise-linear and provide a characterization of any equilibrium when

they are concave and sufficiently smooth.

The literature on oligopolistic competition and Cournot competition in particular, is vast and we

cannot do justice to it here. Instead we refer the reader to the textbooks Okuguchi and Szidarovszky

(1999) and Vives (2001). They provide detailed treatments covering such questions as existence,

uniqueness, and stability of equilibria, as well as properties of the equilibria and how they relate to

market structures, etc. Some work from the operations literature is particularly relevant, however,

and concerns settings in which firms compete across multiple products and markets2. For example,

the firms in Kluberg and Perakis (2012) produce multiple differentiated products and face asym-

metric production constraints. Their model is more general in that the linear cost functions vary

with firm and they allow more general affine inverse demand functions that allows for cross-market

dependence in such a way that the products are gross substitutes for each other. However, most of

their analysis assumes a single product per firm and they don’t explicitly characterize the equilib-

rium. In contrast, in our model each of the firms can produce each product but the product markets

are independent in the sense that a change in the quantity produced for one product has no impact

on the clearing price for other products. Nonetheless the product markets are all coupled via the

capacity constraints and we explicitly characterize the unique equilibrium. Motivated by problems

in communications networks and airports, Perakis and Sun (2014) consider Cournot competition in

service industries where the firms compete for users who are sensitive to both prices and congestion.

They consider congestion with and without spillover costs and they quantify the efficiency of an

unregulated oligopoly w.r.t the optimal social welfare. Other papers that also model competition

across multiple markets include Allon and Federgruen (2009), Perakis and Roels (2007) and Fed-

ergruen and Hu (2015) but the form of competition in these papers is not Cournot and the firms

are not budget / capacity constrained.

More recently, there has been work on Cournot competition across markets with a network struc-

ture. For example, Bimpikis et al. (2019) use a bipartite graph to model which subset of markets

(of a homogeneous good) a firm can supply to. They characterize the unique Cournot equilibrium

under a linear inverse demand function and relate it to supply paths in the underlying network

structure. Related work includes Abolhassani et al. (2014) who study a more general version of

Cournot competition in networked markets and Cai et al. (2019) who consider a similar problem

but focus on the role of a market-maker in determining the resulting Cournot equilibrium and

whether or not whether or not there is a unique equilibrium. Motivated by the operations of online

platforms, Lin et al. (2017) contrast the market efficiency of open access versus discriminatory

access platforms using a networked Cournot competition model. An important difference between

our work and this existing literature on networked Cournot competition is that we explicitly impose

capacity constraints on the quantities that each firm can supply across markets.

The remainder of this note is organized as follows. In Section 2 we formulate the Cournot equilib-

rium problem. Then in Section 3 we introduce the notions of augmented and cutoff budgets before

2We note that there exists an extensive operations management literature devoted to the study of Cournot equi-
librium in a single market under various operational characteristics on the firms production function. Some represen-
tative examples include Deo and Corbett (2009), Downward et al. (2010) Jansen and Özaltin (2017), and references
therein.
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using them to fully characterize the equilibrium. In Section 4 we use our results from Section 3 to

study the sensitivity of the equilibrium (aggregate output, consumer surplus, social welfare etc.)

to the total number of firms whilst keeping the aggregate budget fixed. We conclude in Section 5

where we also outline some directions for future research. Some intuition regarding the concepts

of augmented and cutoff budgets are provided in Appendix A. Proofs for the various results are

provided in Appendix B while Appendix C considers how the analysis might extend to non-linear

inverse-demand functions.

2 Problem Formulation

We consider a setting where N firms engage in Cournot competition in M different markets. We

assume that firm i ∈ [N ] is budget constrained and can spend no more than Bi ≥ 0 dollars in

total. (For a positive integer k, we let [k] := {1, 2, . . . , k}). Firm i competes in market j ∈ [M ] by

allocating an amount xij ≥ 0 of its budget subject to the budget constraint
∑M

j=1 xij ≤ Bi.

The profits that firm i makes on market j depend on its budget allocation xij as well as on the

cumulative budget spent by all firms in the market. Specifically, we assume that firm i’s profit in

market j is equal to rj(Xj)xij , where Xj :=
∑N

i=1 xij is the total budget allocated to market j by

all N firms and the function rj(·) models market’s j return per unit of investment. Given a budget

allocation {xij}j∈[M ], firm i collects a net profit
∑M

j=1 rj(Xj)xij . We will assume a linear demand

model so that rj(x) = Rj − x/βj for two positive parameters Rj and βj for all j ∈ [M ]. Without

loss of generality, we rank the markets so that 0 ≤ R1 ≤ R2 ≤ · · · ≤ RM and we will refer to the

pair (Rj , βj) as the jth market. For future reference, we will denote by M := {(Rj , βj) : j ∈ [M ]}
the collection of markets, and by B = (B1, . . . , BN ) the vector of budgets. Again without loss of

generality, we assume the elements in B have been ordered so that

B1 ≥ B2 ≥ · · · ≥ BN > 0. (1)

Let Xij− := Xj −xij be the total budget allocated to market j by all firms except firm i and define

Xi− := (Xi1− . . . XiM−). For a given value Xi−, firm’s i best-response budget-allocation strategy

{x∗ij(Xi−)}j∈[M ] solves the optimization problem:

Πi(Xi−) := max
xij≥0

M∑

j=1

rj(Xij− + xij)xij subject to

M∑

j=1

xij ≤ Bi. (2)

Definition 2.1 (Cournot Equilibrium) Consider a collection of markets M := {(Rj , βj) : j ∈ [M ]}
and a set of N firms with budgets B = (B1, . . . , BN ). A Cournot equilibrium is a set of budget

allocations {x∗ij}j∈[M ] for i ∈ [N ] chosen by the firms so that:

(i) {x∗ij}j∈[M ] solves the optimization problem (2) for i ∈ [N ].

(ii) They satisfy the fixed-point condition:

Xij− =
∑

k ̸=i

x∗kj(Xk−) for all i ∈ [N ] and j ∈ [M ]. (3)
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Before proceeding to analyze the Cournot game and solving for its equilibrium, we describe several

applications that can be modelled using this framework. In each case the players are assumed to

be in Cournot competition.

1. Production Scheduling: There are N manufacturers who can produce M different products.

The total production capacity of the ith manufacturer is Bi and it allocates xij units of this

capacity to the production of product j. Other settings are also possible. For example, we

could consider the settings where Bi represents a space budget.

2. Airline Revenue Management: There are N airlines and a total of M routes under consid-

eration. The ith airline has a total of Bi passenger seats to allocate to the M routes. Then

xij represents the number of seats allocated by the ith airline to the jth route (i.e., partition

booking limits). Market competition in the airline industry has been studied in Brander and

Zhang (1990), Kim and Singal (1993), Hu et al. (2012), Alves and Forte (2015) and references

therein.

3. Intertemporal Competition with Exhaustible Resources: There are N firms each endowed

with a finite amount of an exhaustible resource (e.g., crude oil or minerals). Firms compete

by deciding the amount of resource (i.e., budget) that they want to put on the market over

time. For example, if there are M time periods then we can view them as constituting M

independent markets where the natural ordering of time is irrelevant. This setting is then

essentially identical to the Production Scheduling setting above. More generally, however, we

could consider a sequential game where the ordering of time certainly does matter. Rather

than pursuing this route (where additional structure might be required to handle the issue

of multiple equilibria), we merely note that the static Cournot equilibrium of this note could

serve as a building block for analyzing the sequential version of the game. We note that

others (e.g., Maskin and Tirole, 1987, Ludkovski and Sircar, 2012) have also studied dynamic

Cournot games with limited production resources.

4. Financial Hedging in Supply Chains: There are N retailers who purchase a single product

from a producer at time t = 0. There are M possible states of nature at time t = 1, each of

which occurs with probability pj , for j = 1, . . . ,M . The producer allows the ordering quantity

to be state dependent with qij denoting the quantity purchased by retailer i in state j. The

producer charges vj per unit ordered in state j. Let Aj andQj denote the market size and total

quantity ordered by all N retailers, respectively, in state j. The ith retailer’s objective is then

given by
∑M

j=1 ((Aj −Q)qij − qijvj) pj . A so-called complete financial market assumption

allows the retailer to allocate (via, for example, a dynamic financial trading strategy) the

budget B across the M states. This means the ith retailer only has to satisfy the budget

constraint in expectation, i.e. she must satisfy
∑M

j=1 pjvjqij ≤ Bi. Letting xij := pjqij , the i
th

retailer’s problem becomes maxxij

∑M
j=1 ((Aj −Q)xij − xijvj) subject to

∑M
j=1 vjxij ≤ Bi.

The vj term in the objective can be absorbed into the Aj term after another change of variables

and so the retailer’s problem can be cast as in (2). This application follows3 Caldentey and

Haugh (2021) who only consider the symmetric case where the budgets Bi are identical.

3Caldentey and Haugh (2021) also allow the producer to choose the vj ’s as a Stackelberg leader. In addition, the
retailers are also allowed to access costly debt markets to help them circumvent their budget constraints.
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Further Discussion of Model Assumptions: One aspect of our model that deserves further

discussion is our assumption that production costs are homogeneous across firms and markets.

While we have restricted ourselves to this case for mathematical tractability, it is worth noting

that we can partially relax this assumption and replace firm i’s budget constraint in (2) with∑
iwijxij ≤ Bi, where the weights wij admit the decomposition wij = θi ηj for all i ∈ [N ] and

j ∈ [M ] with θi > 0 and ηj > 0. We interpret θi as a measure of the production efficiency of firm i

and ηj as a measure of the costs of serving market j. For example, with xij denoting the number

of units that firm i sells in market j, we can think of θi as firm i’s per-unit production cost and

ηj as a cost factor that captures transportation and other commercialization fees that firms incur

when serving market j4.

In this heterogeneous cost setting, firm i’s best-response problem becomes:

max
xij≥0

M∑

j=1

[
Rj −

Xij− + xij
βj

]
xij subject to

M∑

j=1

θi ηj xij ≤ Bi.

We can reduce this new formulation back to our base model in (2) with homogeneous costs by

introducing the change of variables

B̂i =
Bi

θi
, x̂ij = ηj xij , β̂j = η2j βj , and R̂j =

Rj

ηj

and firm i’s best-response problem becomes

max
x̂ij≥0

M∑

j=1

[
R̂j −

X̂ij− + x̂ij

β̂j

]
x̂ij subject to

M∑

j=1

x̂ij ≤ B̂i.

Admittedly, the decomposition wij = θi ηj is somewhat restrictive. For example, it does not allow

for the modelling of asymmetric competitive advantages that some firms can have in some markets

or the imposition of a network structure. Nonetheless, it does provide a considerable degree of

flexibility and might provide a useful approximation in many realistic settings.

Another aspect of our model that deserves further discussion is our choice of linear inverse demand

functions which are quite common in the oligopoly literature. See, for example, Levitan and Shubik

(1972), Singh and Vives (1984), Szidarovszky and Okuguchi (1988), Bernstein and Federgruen

(2004), Yao et al. (2008), Farahat and Perakis (2011), Kluberg and Perakis (2012) and Federgruen

and Hu (2015) as well as the textbook by Vives (2001). Establishing existence and uniqueness of

a Cournot equilibrium using these demand functions is often quite straightforward using standard

techniques. Indeed establishing existence and uniqueness for more general concave inverse demand

functions can often be tackled using the concave games framework of Rosen (1965).

Our choice of linear inverse demand functions is also restricted by the assumption of independent

markets so that a change in the quantity produced for one market has no impact on the clearing price

in other markets. A second restriction of our model is that we assume all of the firms have access

to all of the markets. This contrasts, for example, with the network Cournot literature discussed

in Section 1 where a bipartite graph (firms on one side and markets on the other) is used to model

which firms can access which markets. However, modelling a network structure can be handled

4With this interpretation we should have ηj ≥ 1.
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as a special case of general heterogeneous costs. (If firm i cannot access market j, for example,

then this can be captured by setting a sufficiently high cost wij .) A third restriction of our model

relates to the assumption of linear production costs but this is a very common assumption in the

literature. Imposing these restrictions, however, allow us to fully characterize the unique Cournot

equilibrium despite the presence of capacity constraints. Indeed, to the best of our knowledge,

we are the first to produce such a characterization in multi-market oligopoly games with capacity

constraints. Moreover, our characterization independently establishes existence and uniqueness by

construction.

3 The Cournot Equilibrium

In this section we provide a complete derivation of the Cournot equilibrium. One of the main

difficulties in finding a Cournot equilibrium in a multi-market setting when firms are budget con-

strained is that it is generally not the case that every firm operates in every market in equilibrium.

For example, a low budget firm might be better off not competing in a market with a small market

size to avoid an inefficient allocation of its budget.

A key step in the derivation is that we can provide a relatively simple characterization of the

markets in which a firm operates by introducing the concepts of ‘augmented’ and ‘cutoff’ budgets.

Definition 3.1 (Augmented and Cutoff Budgets)

(i) For a vector of firms’ budgets B = (B1, . . . , BN ), the augmented budget associated to firm i

is given by

Bi := i Bi +
N∑

k=i

Bk, for all i ∈ [N ]. (4)

(ii) For a set of linear markets M := {(Rj , βj) : j ∈ [M ]}, the cutoff budget of market j is given

by

Bj :=
M∑

k=j

βk (Rk −Rj), for all j ∈ [M ]. (5)

We also define B0 :=
∑M

k=1 βk Rk.

Recall that the firms have been ordered so that B1 ≥ B2 ≥ . . . ≥ BN . It follows that the

sequence {Bi} is also non-increasing in i. It is also worth noting that Bi does not depend on

{B1, . . . , Bi−1}, i.e., on the (i− 1) highest budgets. Similarly, since the markets have been ordered

so that 0 ≤ R1 ≤ · · · ≤ RM , it follows that the {Bj}’s are non-increasing in j and the value of Bj

is independent of the characteristics of markets {1, 2, . . . , j − 1}. As we shall see, the significance

of the augmented and cutoff budgets is that in equilibrium, firm i operates in market j if and only

if Bi > Bj . Some intuition regarding the concepts of augmented and cutoff budgets is provided in

Appendix A. Before we can formally state our equilibrium result, one further definition is needed.
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Definition 3.2 For a given collection of linear markets M := {(Rj , βj) : j ∈ [M ]}, we define the

function H(x) according to

H(x) := inf
{
z ≥ 0 such that

M∑

j=1

βj (Rj − z)+ ≤ x
}
, for any x ≥ 0.

We note that H(·) is a continuous, non-increasing and piece-wise linear function that satisfies

H(Bj) = Rj for all j ∈ [M ]. We are now ready to state our main result.

Theorem 1 (Cournot Equilibrium)

Given a collection of linear markets M := {(Rj , βj) : j ∈ [M ]} and a set of firms with budgets

B = (B1, . . . , BN ) satisfying the conditions in (1), there is a unique Cournot equilibrium {x∗ij} that

satisfies

x∗ij = βj


 Rj

1 + n∗
j

− H(Bi)

i+ 1
+

n∗
j∑

k=1

H(Bk)

k(k + 1)
−

i∑

k=1

H(Bk)

k(k + 1)



+

, (6)

where the {Bi}’s are the firms’ augmented budgets defined in equation (4) and

n∗
j := max

{
i ∈ [N ] such that Bi > Bj

}
(7)

is the number of firms operating in market j where the {Bj}’s are the markets’ cutoff budgets defined

in (5).

It is interesting to note that (6) implies that firm i’s allocations x∗ij depend on the vector of

budgets B = (B1, . . . , BN ) only through the values of (Bi,Bi+1, . . . ,BN ), which according to (4)

are all independent of the value of the highest i− 1 budgets (B1, B2, . . . , Bi−1). At the same time,

(Bi,Bi+1, . . . ,BN ) do depend on i, i.e. on the number of firms that have a budget greater than or

equal to firm i’s budget. In other words, the allocation decisions of a firm are unaffected by the

size (but not the number) of larger firms.

An interesting special case is the symmetric case where we have Bi = B for all i. In this case

Bi = (N + 1)B and the expression for x∗ij in (6) also simplifies considerably. In particular, since

H(Bk) = H((N+1)B) is independent of k, both summations in (6) can be expressed as telescoping

sums and considerable simplification occurs. This leads to the following corollary.

Corollary 1 (Symmetric Firms) Suppose the N firms are identical with Bi = B for all i ∈ [N ].

Then in equilibrium

x∗ij =
βj(Rj −H((N + 1)B))+

1 +N
. (8)

The following proposition builds on Theorem 1. It (i) establishes monotonicity properties of the

equilibrium ordering quantities and (ii) highlights the central role played by the augmented and

cutoff budgets in the equilibrium.
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Proposition 1 Given a collection of linear markets M := {(Rj , βj) : j ∈ [M ]} and a set of firms

with budgets B = (B1, . . . , BN ) ordered as in (1), the Cournot equilibrium satisfies:

(i) x∗ij > 0, i.e. firm i operates in market j, if and only if Bi > Bj. In particular, x∗iM > 0 for

all i ∈ [N ] since BM = 0 (see equation 5). In addition, x∗ij is non-increasing in i and x∗ij/βj
is non-decreasing in j.

(ii) X∗
j =

∑N
i=1 x

∗
ij > 0, i.e. market j is active, if and only if B1 > Bj. Furthermore,

X∗
j = βj


 n∗

j Rj

1 + n∗
j

−
n∗
j∑

k=1

H(Bk)

k(k + 1)


 .

(iii)
∑M

j=1 x
∗
ij = Bi, i.e. firm i’s budget constraint is binding, if and only if Bi ≤ B0.

Figure 1 depicts the Cournot equilibrium ordering quantities for M = 10 markets and N = 20

firms. In panel (a) all budgets are binding whereas in panel (b) only the smallest fourteen budgets

are binding. Different bars correspond to different firms and different colors correspond to different

markets. Moreover, we assumed the βj ’s were constant w.r.t j and so the monotonicity w.r.t both

i and j from part (i) of Proposition 1 is evident. In particular, (i) we see firms increase their

allocations to each market as their budgets increase and (ii) for a fixed budget, i.e. firm, we see the

allocation to market j increases in j. (For a fixed budget, the jth segment in the bar corresponds

to the jth market.)

Cournot Order Quantities by Firm

199 204 209 214 219 224 229 234 239 244 249 254

Budget

0

50

100

150

200

250

300

(a) All budgets binding.

Cournot Order Quantities by Firm

253 258 263 268 273 278 283 288 293 298 303 308

Budget

0

50

100

150

200

250

300

(b) Smallest fourteen budgets binding.

Figure 1: Cournot equilibrium ordering quantities for M = 10 markets and N = 20 firms. In Figure 1(a) all budgets are
binding whereas in Figure 1(b) only the first fourteen firms have their budgets binding. Other details are provided in the
main text.

4 Sensitivity Analysis on the Number of Firms

We now investigate how the outcome of the Cournot equilibrium in Theorem 1 changes as a function

of the total number of firms N . To this end, let us denote by Bi(N) and X∗
j (N) the budget of firm
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i ∈ [N ] and the equilibrium output in market j ∈ [M ], respectively, when there are N competing

firms. In order to have a meaningful comparison of how X∗
j (N) varies with N , we assume that the

cumulative budget BC :=
∑N

i=1Bi(N) is constant and therefore independent of N throughout this

section.

So as to capture different budget distributions across the N firms, we will assume the budget of

firm i (when there are N firms in the market) is equal to

BN
i =

[
f
( i− 1

N

)
− f

( i

N

)]
BC, i ∈ [N ], (9)

for some given non-decreasing and convex function f : [0, 1] → [0, 1] with f(0) = 1 and f(1) = 0.

The monotonicity and convexity of f guarantee that BN
1 ≥ BN

2 ≥ · · · ≥ BN
N as assumed in (1).

Combining equations (9) and (4) we see that the augmented budget of firm i equals

BN
i =

[
(i+ 1) f

( i− 1

N

)
− i f

( i

N

)]
BC.

As a concrete example, consider the exponential family of functions defined as

F :=
{
fα(x) = (e−αx − e−α)/(1− e−α) : α ≥ 0

}
.

The value of α controls the degree of heterogeneity in the distribution of BC across the firms. On

one extreme we have limα↓0Bα
i (N) = BC/N so that the cumulative budget is uniformly distributed

across firms as α approaches 0. On the other extreme we have limα→∞Bα
i = BC 11(i = 1) so that

the cumulative budget is allocated entirely to firm 1 in the limit as α goes to infinity.

The six panels in Figure 2 depict aggregate Cournot equilibrium outputs as a function of the number

of firms (N) when there are M = 10 markets for each value of α ∈ {0, 5, 10,∞}. For the three

panels on the top row we set BC = 0.9B0 while for the three panels in the bottom row we set

BC = 1.1B0. (Recall from part (iii) of Proposition 1 that firm i’s budget is binding if and only if

Bi ≤ B0. This means the “average” firm has a binding budget constraint in the top row of panels

and a non-binding budget constraint in the bottom row of panels.) The two panels on the left

display the total output across all M markets, i.e.
∑M

j=1X
∗
j . The middle and right panels depict

the values of X∗
1 and X∗

M , respectively.

We see that increasing the value of N , i.e. increasing competition among firms, increases the total

output across all markets. (When α = ∞ there is effectively only 1 firm as explained above so in this

case the total output is independent of N .) The effect of competition on the output of a particular

market can be positive or negative, however. For example, when BC = 0.9B0, the total output X∗
1

in market 1 can decrease and even become zero as N increases. This is most easily explained by

recognizing that there are two effects at play. The first effect is the competition effect mentioned

above whereby increasing N increases the total output in the markets. For the second effect, we

first note that an increase in N causes each retailer’s individual budget to decrease since BC is held

fixed. As N increases this forces the firms to concentrate more of their ever scarce resources on

the more profitable markets and less on the less profitable ones. Because of our indexing, market

1 is in fact the least attractive market and the middle sub-figure in the upper panel of Figure 2

suggests that this second effect begins to dominate beyond values of N = 9.
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Figure 2: Aggregate Cournot equilibrium outputs for the case in which M = 10 for four distributions of budgets
corresponding to α ∈ {0, 5, 10,∞} as function of the number of firms (N).

We also see that the more uniformly distributed the total budget BC is among the N firms (cor-

responding to smaller values of α), the larger the cumulative output
∑M

j=1X
∗
j . However, this

aggregate monotonicity does not hold across each of the individual markets. This is demonstrated

by the totals for X∗
1 in the middle panel of Figure 2 when BC = 0.9B0. The results in the figure

also suggest that – except in the extreme case when α = ∞ – the equilibrium outputs in every

market converge to the same limit as N → ∞ independently of the value of α. We formalize this

observation in the following proposition under the additional condition limN→∞B1(N) = 0, which

is satisfied for the exponential family above for every α < ∞. In other words, we consider an

asymptotic regime with a very large number of small firms that collectively have a fixed cumulative

budget BC.

Proposition 2 Consider the asymptotic regime in which the number of firms N goes to infinity

and limN→∞B1(N) = 0. Then

lim
N→∞

X∗
j (N) = βj

(
Rj −H(BC)

)+
for all j ∈ [M ].

It follows that limN→∞X∗
j (N) = 0 for all j < k∗ := min{j ≥ 1: Bj < BC}.

It is worth noting that the limiting output quantities in the previous proposition are such that the

margin rj(X
∗
j ) is constant and equal to H(BC) for all j ≥ k∗. Intuitively, in the limit as N → ∞,

each firm becomes infinitesimally small and their individual strategies have no impact on a market’s

return.
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We next look at how the value of N and the distribution of budgets across the firms impact the

firms’ payoffs and consumers’ surplus. To this end, we denote by

ΠC :=
N∑

i=1

Πi =
M∑

j=1

(
Rj −

X∗
j

β

)
X∗

j

the firms’ cumulative payoff across all markets. Similarly, we define

S :=

M∑

j=1

(X∗
j )

2

2βj

to be the consumers’ total surplus across all markets5. Finally, we define the social surplus across

all markets to be W := ΠC + S.

Figure 3 depicts the values of ΠC (left panel), S (middle panel) and W (right panel) as a function

of N for four distributions of the total budget BC across firms using (9) and the exponential family

with α ∈ {0, 5, 10,∞}. The dashed-line on each panel corresponds to the solution that a social

planner would obtain by solving the aggregate social surplus maximization problem:

max
Xj≥0

M∑

j=1

(
Rj −

Xj

βj

)
Xj +

M∑

j=1

(Xj)
2

2βj
subject to

M∑

j=1

Xj ≤ BC.
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Figure 3: Firms’ cumulative payoff (ΠC), consumers’ total surplus (S) and social surplus (W) as a function of N for
four distributions of the total budget BC across firms using (9) and the exponential family with α ∈ {0, 5, 10,∞}. The
dashed-line on each panel corresponds to the social planner solution. Each plot corresponds to the average over 100
simulations in which the demand function rj(Xj) = Rj −Xj/βj on each market j ∈ [M ] was randomly generated with
Rj ∼ Uniform[0, 1000] and βj ∼ − log(Uniform[0, 1]). The total budget BC on each simulation was set at BC = 0.9B0.

As we can see from the figure, and except for the limiting case with α = ∞, the firms’ total payoff

decreases in N while the consumers’ surplus increases. In aggregate, the net effect is that the social

surplus increases with N . Also, these effects are more pronounced for small value of α, i.e., as the

cumulative budget BC is more uniformly distributed across firms.

5Recall that the consumers’ surplus in a market is the area under the demand curve and above a horizontal line
at the equilibrium price.
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Remark 1 We note that Theorem 1 and Proposition 1 can be used to do some quick and basic analysis

of mergers, a topic of interest to many researchers e.g. Bimpikis et al. (2019). For example, suppose

two firms merge and the augmented budget of the merged firm is smaller than the cutoff budget of the

jth market. Then it follows from (7) that n∗
j does not change post-merger. It then follows from (6)

that the equilibrium ordering quantities in the jth market of all firms which are bigger than the merged

firm are unchanged post-merger. □

5 Conclusions and Further Research

In this note we have considered a Cournot competition model where a number of firms compete

on quantities across a number of independent product markets. We assume independent linear

inverse-demand functions and that each of the firms are budget constrained. Together these as-

sumptions allow us to define an explicit ordering of the firms and markets, and define the notions

of augmented and cutoff budgets. We then characterize the unique Cournot equilibrium in terms

of these augmented and cutoff budgets.

There are several potential directions for further research. For example, the presence of capacity

constraints raises a new set of challenges in terms of how these capacity levels are determined in

the first place. Our model assumes that firms’ capacities are exogenously given but in practice we

might expect that firms will also optimize them. Along the same line, our model leads naturally

to the study of market dynamics in which potential new firms can enter the market over time. In

this situation, we expect that incumbent firms would use capacity levels to gain market power and

deter competition. In addition, it might also be of interest to extend the model to include lower

bounds (or fixed costs) on the allocation of capacity among markets. In our current model, firms

are able to allocate any amount of capacity on a market. Realistically, however, a firm would only

operate in a market if it can ensure a minimum sales volume.

There are several other possible directions. First, can we extend our model to incorporate a network

structure that restricts the set of markets in which each firm can participate. This extension may

be more tractable than handling a general heterogeneous cost structure which includes the network

structure as a special case. Second, can we handle products that are substitutes? We have not been

able to solve this problem but it’s possible that the ranking of both markets and firms still persists

in this case thereby suggesting that some progress may be possible. A third direction is the question

of mergers as discussed in Remark 1 of Section 4. A further direction concerns our observation in

Section 4 that the consumer surplus and social surplus increased in the number of firms N whilst

keeping the total aggregate budget fixed. While we witnessed this behavior numerically for a broad

range of budget distributions (as characterized by the parameter α), it would be instructive to

establish some of these results more rigorously. We would also like to extend our analysis of the

problem with non-linear inverse-demand functions from Appendix C. For example, is it possible

to show the iterative algorithm based on Proposition C.1 always converges? Or can we solve

explicitly for the equilibrium quantities in some cases? Finally, it would also be of interest to

study the stability of the unique Cournot equilibrium and to understand what kind of dynamics or

adjustment processes would ensure convergence to the equilibrium.

Acknowledgment The authors thank the area editor, an anonymous associate editor and two

referees for many helpful comments on an earlier version of the paper.
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A Appendix: Intuition for the Augmented and Cutoff Budget

Definitions

In this appendix we provide some intuition regarding the definitions of augmented and cutoff

budgets. We begin with the cutoff budgets {Bj}. The following result establishes that the cutoff

budget Bj corresponds to the minimum cumulative investment in markets {j + 1, . . . ,M} that

guarantees that market j is open in equilibrium. (By “open” we mean that Xj > 0.) This

minimum cumulative investment is independent of the number of firms and their budgets.

Proposition 3 Suppose that in equilibrium
∑M

k=j+1Xk > Bj. Then we must have Xj > 0.

Proof of the Proposition: Suppose by contradiction that
∑M

k=j+1Xk > Bj and Xj = 0. Then,

there exists a market ℓ ∈ {j+1, . . . ,M} such that Rℓ−Xℓ/βℓ < Rj . Indeed, if such an ℓ does not exist

then we would have Rk−Xk/βk ≥ Rj for all k ∈ {j+1, . . . ,M} or equivalently βk [Rk−Rj ] ≥ Xk for

all k ∈ {j+1, . . . ,M}. Summing over k ∈ {j+1, . . . ,M} we would get Bj =
∑M

k=j+1 βk [Rk −Rj ] ≥∑M
k=j+1Xk which violates our hypothesis.

Since Rℓ ≥ Rj it follows that Xℓ > 0 and there exits a firm i such that xiℓ > 0 and xij = 0 (since we

have assumed Xj = 0). Suppose firm i swaps an amount ϵ ∈ (0, xiℓ] from market ℓ to market j. Then

the net effect on its payoff is

∆Πi(ϵ) =

[
Rℓ −

Xℓ − ϵ

βℓ

]
(xiℓ − ϵ) +

[
Rj −

ϵ

βj

]
ϵ−

[
Rℓ −

Xℓ

βℓ

]
xiℓ

=

[
xiℓ
βℓ

+Rj −
(
Rℓ −

Xℓ

βℓ

)]
ϵ+ o(ϵ) > 0

where the strict inequality follows for ϵ sufficiently small. It follows that firm i would like to move some

of its budget from market ℓ to market j which contradicts the equilibrium condition. Hence Xj > 0 as

required. □

Let us now turn to the interpretation of the augmented budgets {Bi}. To simplify the exposition,

we will assume in what follows that βj = 1 for all markets j. We first note the following facts:

Fact 1: Suppose market j is the only market and there are exactly i firms, none of whom are budget

constrained. Then the unconstrained Cournot equilibrium quantity invested by each of the i

players is Rj/(i+ 1).

Fact 2: When there are M markets (and still i firms), then in equilibrium each of them will invest

up to (Rk − Rj)/(i + 1) in the kth market for k = j + 1, . . . ,M before investing in market

j. That is, they may not sell as much as the unconstrained Cournot equilibrium Rk/(i + 1)

(from Fact 1) before it becomes profitable to start investing in market j.

Justification: Suppose each of the i firms has already invested (Rk − Rj)/(i + 1) in the

kth market for k = j + 1, . . . ,M and suppose one of these firms is considering investing an

additional ϵ in the kth market. Then the payoff in the kth market for this firm will be

Pk(ϵ) :=

(
Rk −

(
i(Rk −Rj)

i+ 1
+ ϵ

))

︸ ︷︷ ︸
Price in market k

(
(Rk −Rj)

i+ 1
+ ϵ

)

︸ ︷︷ ︸
Quantity invested by firm

.
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In particular, the firm’s gain (to order ϵ) from this additional investment of ϵ is given by

Pk(ϵ)− Pk(0) =

(
Rk −

i(Rk −Rj)

i+ 1

)
ϵ− (Rk −Rj)

i+ 1
ϵ+ o(ϵ)

= Rj ϵ+ o(ϵ)

which is precisely the gain (again to order ϵ) from the first ϵ units invested in market j. The

claim follows. □

Now consider the following argument regarding firm i’s possible investment in market j. Firm i

will begin to invest in market j if and only if its budget Bi can cover what’s required for investing

in markets j + 1 to M . But before determining what firm i requires for investing in markets j + 1

to M we must also consider firms i+ 1 to N and what they invested in those markets. At worst6

(in terms of firm i’s ability to invest in market j), they will have already invested everything in

markets j + 1 to M . So let us assume that firms i + 1 to N have already invested their entire

budgets in markets j +1 to M . In particular, let ak be the total amount invested by firms i+1 to

N in market k for k = j + 1, . . . ,M . Then

M∑

k=j+1

ak =
N∑

l=i+1

Bl. (A-1)

Adjusting for these smaller firms, we can view the size of market j as being reduced from Rk

to Rk − ak for k = j + 1, . . . ,M . It follows from Fact 2 above that firm i will invest up to

(Rk − ak −Rj)/(i+1) in the kth market for k = j+1, . . . ,M before investing in market j. As long

as Bi covers these investments in markets j + 1 to M , firm i will invest in market j. That is, firm

i will invest in market j if and only

Bi ≥ 1

i+ 1

M∑

k=j+1

(Rk − ak −Rj)

⇐⇒ Bi ≥ 1

i+ 1

M∑

k=j+1

(Rk −Rj)−
1

i+ 1

N∑

l=i+1

Bl by (A-1) (A-2)

⇐⇒ (i+ 1)Bi +
N∑

l=i+1

Bl ≥
M∑

k=j+1

(Rk −Rj)

⇐⇒ Bi ≥ Bj . (A-3)

Given these arguments, it might make sense to define a new quantity, say a pseudo-budget B(i, j)

given by the r.h.s. of (A-2) for each firm i and market j. We could then say that firm i invests in

market j if and only firm i’s budget Bi is greater than or equal to the pseudo-budget B(i, j). From

an economic perspective, this is easier to understand but it means we have M ×N pseudo-budgets.

Instead, by bringing terms that only involve firms to the l.h.s. and terms only involving markets to

the r.h.s. as in (A-3), we only need to define N terms involving firms (their augmented budgets)

and M market terms (their cutoff budgets) for a total of just M +N terms.
6The more that firms i + 1 to N invest in markets j + 1 to M , the less that firm i will invest in equilibrium in

those markets and hence the more he will have available for investing in market j.
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B Appendix: Proofs

Proof of Theorem 1: We start by characterizing the best response that firm i uses as a function

of the strategies of the other firms. Taking Xi− as fixed, it is straightforward to obtain that the

optimal solution to (2) satisfies

xij =
(βj Rj − βj λi −Xij−)

+

2
, (B-4)

where λi ≥ 0 is the Lagrange multiplier corresponding to the ith firm’s budget constraint. In

particular, λi ≥ 0 is the smallest real such that
∑M

j=1 xij ≤ Bi. Given the ordering of the budgets

Bi, it follows that λ1 ≤ λ2 ≤ . . . ≤ λN when they are chosen optimally. Equation (B-4) and

the ordering of the Lagrange multipliers then implies that for each market j, there is a number

nj ∈ {0, 1, . . . , N} such that xij = 0 for all i > nj . In other words, nj is the number of firms that

operate in market j. We therefore obtain the following system of equations

xij = βj Rj − βj λi −Xj , for i = 1, . . . , nj (B-5)

where Xj =
∑nj

i=1 xij is the total budget allocation in market j. For each j = 1, . . . ,M , this is a

system with nj linear equations in nj unknowns which we can easily solve once the nj ’s are known.

Summing the xij ’s from i = 1 to nj we obtain

Xj =
βj

nj + 1

[
nj Rj −

nj∑

i=1

λi

]
. (B-6)

Substituting this value of Xj into (B-5), and using the fact that λ1 ≤ λ2 ≤ . . . ≤ λN , we see the

optimal ordering quantities xij for i = 1, . . . , N and j = 1, . . . ,M satisfy

xij =
βj

nj + 1

[
Rj − λi (nj + 1) +

nj∑

k=1

λk

]+
. (B-7)

To complete the characterization of the Cournot equilibrium we must compute the values of the

Lagrange multipliers {λi, i = 1, . . . , N} as well as the nj ’s. For reasons that will soon become

apparent, it will be convenient to replace the Lagrange multipliers by an equivalent set of unknowns

{αi, i = 1, . . . , N} that we define below.

Suppose xij = 0 for some market j. Then (B-4) implies βj Rj − βj λi − Xj ≤ 0 which, after

substituting for Xj using (B-6), implies that

Rj ≤ λi (1 + nj)−
nj∑

k=1

λk. (B-8)

It follows that nj depends on j only through the value of Rj , that is, nj = nj(Rj). If we replace Rj

and nj in (B-8) with a generic R ∈ [0,∞) and n(R), respectively, we can define αi to be that value

of R where the ith retailer moves from ordering zero to ordering a positive quantity. It therefore
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satisfies

αi = λi (1 + n(R))−
n(R)∑

k=1

λk (B-9)

and we note the αi’s are non-decreasing in i. Abusing notation slightly, we see7 that n(αi) = i− 1

and so (B-9) implies

αi = i λi −
i−1∑

k=1

λk for i = 1, . . . , N. (B-10)

Using (B-10) recursively, one can show that

λi =
αi

i
+

i−1∑

k=1

αk

k (k + 1)
. (B-11)

Substituting this expression in (B-7), it follows that for all i = 1, . . . , N

xij = βj

[
Rj

1 + nj
− λi +

nj∑

k=1

λk

1 + nj

]+
= βj

[
Rj

1 + nj
− αi

i
+

nj∑

k=1

λk

1 + nj
−

i−1∑

k=1

αk

k (k + 1)

]+

= βj

[
Rj

1 + nj
− αi

i+ 1
+

nj∑

k=1

λk

1 + nj
−

i∑

k=1

αk

k (k + 1)

]+

= βj

[
Rj

1 + nj
− αi

i+ 1
+

nj∑

k=1

αk

k(k + 1)
−

i∑

k=1

αk

k (k + 1)

]+
(B-12)

where (B-12) follows from the identity

nj∑

k=1

λk

1 + nj
=

1

1 + nj

nj∑

k=1

(
αk

k
+

k−1∑

l=1

αl

l(l + 1)

)
=

nj∑

k=1

αk

k(k + 1)

which in turns follows from (B-11) and reversing the order of summation. It should be clear from

the discussion above that

nj = max
{
i ∈ {0} ∪ [N ] such that αi ≤ Rj

}
(B-13)

where α0 := 0 and we therefore only need to derive the values of the αi’s to complete the proof of

the theorem.

From (B-11) and the ordering of the firms’ budgets, it follows that if firm i’s budget constraint is

not binding then firm k’s budget constraint is also not binding, for all k = 1, . . . , i. As a result, if∑M
j=1 xij < Bi then λk = 0 for all k = 1, . . . , i and (B-11) implies that αk = 0 for all k = 1, . . . , i.

Hence, if αi > 0 the budget constraint is binding and
∑M

j=1 xij = Bi as required.

To complete the proof, we need to show that αi is equal to H(Bi) for all i ∈ [N ]. To this end, we

7We are assuming that the N budgets are distinct so that Bk−1 > Bk. This then implies xi(αk) > 0 for all
i ≤ k− 1. The case where some budgets coincide is straightforward to handle. We also emphasize that the αi’s need
not be in the range [minj Rj , maxj Rj ].
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make use of Lemma 1 stated immediately after this proof. Setting Vj set to 1 in the lemma implies

M∑

j=1

xij +
1

i+ 1

N∑

l=i+1

M∑

j=1

xlj =
∑

j :αi<Rj

βj
i+ 1

(Rj − αi) (B-14)

for i = 1, . . . , N . But the budget constraints for the N firms also imply

M∑

j=1

xij +
1

i+ 1

N∑

l=i+1

M∑

j=1

xlj ≤ Bi +
1

i+ 1

N∑

l=i+1

Bl (B-15)

which, when combined with (B-14), leads to

∑

j :αi<Rj

βj (Rj − αi) ≤ (i+ 1)Bi +
N∑

l=i+1

Bl = Bi (B-16)

for i = 1, . . . , N . We can use (B-16) sequentially to determine the αi’s. Beginning at i = N , we see

that the N th firm’s budget constraint is equivalent to

∑

j :αN<Rj

βj (Rj − αN ) ≤ BN . (B-17)

The optimality condition on λi implies that it is the smallest non-negative real that satisfies the

ith budget constraint. Since the optimal λi’s are non-decreasing in i, we see from (B-15) that αi is

therefore the smallest real greater than or equal to 0 satisfying the ith budget constraint. Therefore,

beginning with i = N we can check if αN = 0 satisfies (B-17) and if it does, then we know the N th

budget constraint is not binding. If αN = 0 does not satisfy (B-17) then we set αN equal to that

value (greater than one) that makes (B-17) an equality. In particular, we obtain that the optimal

value of αN is H(BN ), as desired.

Note that if αN = 0 then none of the budget constraints are binding. In particular, this implies

αi = 0 and λi = 0 for all i = 1, . . . N . Moreover, αi = H(Bi) must be satisfied for all i since it

is true for i = N and since the Bi’s are decreasing. Suppose now that the budget constraint is

binding for firms i + 1, . . . , N and consider the ith firm. Then the ith firm’s budget constraint is

equivalent8 to (B-16) and we can again use precisely the same argument as before to argue that

αi = H(Bi) holds. □

We now state and prove the lemma that we used for proving Theorem 1.

Lemma 1 Consider a collection of linear markets M := {Rj − x/βj : j ∈ [M ]} and the budget

allocations {xij} in (B-12). Then, for any vector (V1, . . . , VM ) we have

(i+ 1)

M∑

j=1

Vj xij +

N∑

k=i+1

M∑

j=1

Vj xkj =
∑

j :αi<Rj

Vj βj (Rj − αi). (B-18)

8Equivalence follows because the second terms on either side of the inequality sign in (B-15) are equal by assump-
tion.
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Proof of Lemma 1: We first recall that the αi’s are non-decreasing in i. We also note that

n(αj) = k − 1 for all αj satisfying αk−1 ≤ αj < αk where j indexes products and k indexes

retailers. Setting αN+1 := ∞ and noting that xij = 0 if αi ≥ αj , we can combine these results and

(B-7) to write

xij =
N∑

k=i

βj
k + 1

[
Rj − (k + 1)λi +

k∑

j=1

λj

]
11
(
αj ∈ [αk, αk+1)

)
. (B-19)

Letting Ωk := {j : αk ≤ αj < αk+1}, we see that (B-19) implies

N∑

l=i+1

M∑

j=1

Vj xlj =

N∑

l=i+1

N∑

k=l

∑

j∈Ωk

Vj βj

k + 1

[
Rj − (k + 1)λl +

k∑

s=1

λs

]

=

N∑

k=i+1

k∑

l=i+1

∑

j∈Ωk

Vj βj

k + 1

[
Rj − (k + 1)λl +

k∑

s=1

λs

]

=

N∑

k=i+1

∑

j∈Ωk

Vj βj

k + 1

[
(k − i)Rj − (k + 1)

k∑

l=i+1

λl + (k − i)

k∑

s=1

λs

]
. (B-20)

(B-19) also implies

M∑

j=1

Vj xij =
N∑

k=i

∑

j∈Ωk

Vj βj
k + 1

[
Rj − (k + 1)λi +

k∑

l=1

λl

]
. (B-21)

If we use the convention
∑i

l=i+1 λl = 0, then the first sum on the right-hand-side of (B-20) can run

from k = i to N instead of k = i+ 1 to N . We can then add 1/(i+ 1) times (B-20) with (B-21) to

obtain
M∑

j=1

Vj xij +
1

i+ 1

N∑

l=i+1

M∑

j=1

Vj xlj =

N∑

k=i

∑

j∈Ωk

Vj βj
k + 1

Zikj (B-22)

where

Zikj :=

[
Rj − (k + 1)λi +

k∑

l=1

λl

+
(k − i)Rj − (k + 1)

∑k
l=i+1 λl + (k − i)

∑k
s=1 λs

i+ 1

]
.

Some straightforward algebra together with (B-10) can be used to show

Zikj =
k + 1

i+ 1
(Rj − αi)

and so by the definition of Ωk we can substitute for Zikj in (B-22) and obtain (B-18). □

Proof of Proposition 1:

(i) Let us prove that x∗ij > 0 if and only if Bi > Bj . First suppose that Bi > Bj . It follows from (7)
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that n∗
j ≥ i and (6) implies that

x∗ij = βj


 Rj

1 + n∗
j

− H(Bi)

i+ 1
+

n∗
j∑

k=i+1

H(Bk)

k(k + 1)



+

≥ βj


 Rj

1 + n∗
j

− H(Bi)

i+ 1
+

n∗
j∑

k=i+1

H(Bi)

k(k + 1)



+

= βj

[
Rj

1 + n∗
j

− H(Bi)

i+ 1
+H(Bi)

(
1

i+ 1
− 1

n∗
j + 1

)]+

= βj

[
Rj −H(Bi)

n∗
j + 1

]+
> 0,

where the weak inequality uses the facts that the sequence {Bi} is non-increasing in i and the

function H(·) is non-increasing and the strict inequality follows from the fact that Rj = H(Bj) and

the assumption Bi > Bj .

Let us suppose now that Bi ≤ Bj . In this case (7) implies that n∗
j ≤ i− 1 and (6) leads to

x∗ij = βj


 Rj

1 + n∗
j

− H(Bi)

i+ 1
−

i∑

k=n∗
j+1

H(Bk)

k(k + 1)



+

≤ βj


 Rj

1 + n∗
j

−
H(Bn∗

j+1)

i+ 1
−

i∑

k=n∗
j+1

H(Bn∗
j+1)

k(k + 1)



+

= βj

[
Rj

1 + n∗
j

−
H(Bn∗

j+1)

i+ 1
−H(Bn∗

j+1)

(
1

n∗
j + 1

− 1

i+ 1

)]+

= βj

[
Rj −H(Bn∗

j+1)

n∗
j + 1

]+
= 0,

where the last equality follows n∗
j + 1 ≤ i and so H(Bn∗

j+1) ≥ H(Bi) ≥ H(Bj) = Rj .

To prove that x∗ij is non-increasing in i note that

x∗ij = βj


 Rj

1 + n∗
j

− H(Bi)

i+ 1
+

n∗
j∑

k=1

H(Bk)

k(k + 1)
−

i∑

k=1

H(Bk)

k(k + 1)



+

= βj


 Rj

1 + n∗
j

− H(Bi)

i+ 1
+

n∗
j∑

k=1

H(Bk)

k(k + 1)
−

i+1∑

k=1

H(Bk)

k(k + 1)
+

H(Bi+1)

(i+ 1)(i+ 2)



+

≥ βj


 Rj

1 + n∗
j

− H(Bi+1)

i+ 1
+

n∗
j∑

k=1

H(Bk)

k(k + 1)
−

i+1∑

k=1

H(Bk)

k(k + 1)
+

H(Bi+1)

(i+ 1)(i+ 2)



+

= βj


 Rj

1 + n∗
j

− H(Bi+1)

i+ 2
+

n∗
j∑

k=1

H(Bk)

k(k + 1)
−

i+1∑

k=1

H(Bk)

k(k + 1)



+

= x∗i+1j .

Finally, the fact that x∗ij/βj is non-decreasing in j follows trivially from (6) and the fact that n∗
j is

non-decreasing in j.
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(ii) From part (i) we have that x∗ij > 0 if and only if i ≤ n∗
j . It follows that

X∗
j =

N∑

i=1

x∗ij =

n∗
j∑

i=1

βj


 Rj

1 + n∗
j

− H(Bi)

i+ 1
+

n∗
j∑

k=1

H(Bk)

k(k + 1)
−

i∑

k=1

H(Bk)

k(k + 1)



+

= βj
n∗
j Rj

1 + n∗
j

− βj

n∗
j∑

i=1

H(Bi)

i+ 1
+ βj

n∗
j−1∑

i=1

n∗
j∑

k=i+1

H(Bk)

k(k + 1)

= βj
n∗
j Rj

1 + n∗
j

− βj

n∗
j∑

i=1

H(Bi)

i+ 1
+ βj

n∗
j∑

i=1

(i− 1)H(Bi)

i(i+ 1)
= βj


 n∗

j Rj

1 + n∗
j

−
n∗
j∑

i=1

H(Bi)

i(i+ 1)


 .

(iii) Let us prove that
∑M

j=1 x
∗
ij = Bi if and only if Bi ≤ B0 using backward induction over i. To

this end, we find convenient to define m∗
i := min{j ∈ [M ] : Bi > Bj} for i ∈ [N ], so that x∗ij > 0 if

and only if j ≥ m∗
i . Also, using the definition of H(·) in Definition 3.2 we have that

H(Bi) =

∑M
k=m∗

i
βk Rk − Bi

∑M
k=m∗

i
βk

for all i ∈ [N ] such that Bi ≤ B0. (B-23)

•) Suppose i = N . We consider two cases: (a) BN ≤ B0 and (b) BN > B0.

(a) Suppose BN ≤ B0. In this case, (7) implies that n∗
j = N for all j ≥ m∗

N and so (6) implies

M∑

j=1

x∗Nj =
M∑

j=m∗
N

x∗Nj =
M∑

j=m∗
N

βj

[
Rj

1 +N
− H(BN )

1 +N

]

=
1

1 +N

M∑

j=m∗
N

βj Rj −
H(BN )

1 +N

M∑

j=m∗
N

βj =
BN

1 +N
= BN ,

where the second-to-last equality uses (B-23) and the last equality follows from the fact that

BN = (1 +N)BN (see equation (4)).

(b) Suppose BN > B0. In this case, m∗
N = 1, n∗

j = N for all j ∈ [M ] and H(BN ) = 0. It follows

that

M∑

j=1

x∗Nj =

M∑

j=1

βj

[
Rj

1 +N
− H(BN )

1 +N

]
=

1

1 +N

M∑

j=1

βj Rj =
B0

1 +N
<

BN

1 +N
= BN .

We conclude that the result holds for i = N .

•) Suppose that the result holds for i+ 1, namely,
∑M

j=1 x
∗
i+1j = Bi+1 if and only if Bi+1 ≤ B0.

•) Let us prove the result for i. We consider again the two cases: (a) Bi ≤ B0 and (b) Bi > B0.

(a) Suppose Bi ≤ B0, then Bi+1 ≤ B0 and by the induction hypothesis
∑M

j=1 x
∗
i+1j = Bi+1. It
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follows that

M∑

j=1

x∗ij =
M∑

j=1

x∗i+1j +
M∑

j=1

(x∗ij − x∗i+1j) = Bi+1 +
M∑

j=1

(x∗ij − x∗i+1j).

Now, for all j ∈ [M ] such that j < m∗
i , we have that x∗ij = x∗i+1,j = 0. On the other hand, for

j ∈ [M ] such that m∗
i ≤ j < m∗

i+1, we have x∗i+1j = 0 < x∗ij and n∗
j = i. It follows from (6)

that

x∗ij = βj

[
Rj

1 + n∗
j

− H(Bi)

i+ 1

]
= βj

[
Rj −H(Bi)

i+ 1

]
.

Finally, for j ≥ m∗
i+1, we have 0 < x∗i+1j ≤ x∗ij and from (6) we get that

x∗ij = βj


 Rj

1 + n∗
j

− H(Bi)

i+ 1
+

n∗
j∑

k=1

H(Bk)

k(k + 1)
−

i∑

k=1

H(Bk)

k(k + 1)




= βj


 Rj

1 + n∗
j

− H(Bi+1)

i+ 2
+

n∗
j∑

k=1

H(Bk)

k(k + 1)
−

i+1∑

k=1

H(Bk)

k(k + 1)
− H(Bi)

i+ 1
+

H(Bi+1)

i+ 2
+

H(Bi+1)

(i+ 1)(i+ 2)




= βj


 Rj

1 + n∗
j

− H(Bi+1)

i+ 2
+

n∗
j∑

k=1

H(Bk)

k(k + 1)
−

i+1∑

k=1

H(Bk)

k(k + 1)
+

H(Bi+1)−H(Bi)

i+ 1




= x∗i+1j + βj

[
H(Bi+1)−H(Bi)

i+ 1

]
.

As a result

M∑

j=1

x∗ij = Bi+1 +
M∑

j=1

(x∗ij − x∗i+1j)

= Bi+1 +

m∗
i+1−1∑

j=m∗
i

βj

[
Rj −H(Bi)

i+ 1

]
+

N∑

j=m∗
i+1

βj

[
H(Bi+1)−H(Bi)

i+ 1

]

= Bi+1 +
1

i+ 1

[m∗
i+1−1∑

j=m∗
i

βj Rj +H(Bi+1)

N∑

j=m∗
i+1

βj −H(Bi)

N∑

j=m∗
i

βj

]

= Bi+1 +
1

i+ 1
[Bi − Bi+1] = Bi,

where the second-to-last equality uses (B-23) and the last equality follows from (4).

(b) Suppose Bi > B0. In this case, H(Bi) = 0 and m∗
i = 1. Using a similar argument as in part

(a) one can show that

M∑

j=1

x∗ij =
M∑

j=m∗
i+1

x∗i+1j +
1

i+ 1

[m∗
i+1−1∑

j=1

βj Rj +H(Bi+1)

N∑

j=m∗
i+1

βj −
N∑

j=1

βj

]
. (B-24)

Suppose that Bi+1 ≤ B0, then (B-24) together with (B-23) and the induction hypothesis
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imply that

M∑

j=1

x∗ij = Bi+1 +
1

i+ 1

[m∗
i+1−1∑

j=1

βj Rj +

N∑

j=m∗
i+1

βj Rj − Bi+1 −
N∑

j=1

βj

]

= Bi+1 +
1

i+ 1

[ N∑

j=1

βj Rj − Bi+1

]
= Bi+1 +

1

i+ 1

[
B0 − Bi+1

]

< Bi+1 +
1

i+ 1

[
Bi − Bi+1

]
= Bi.

Suppose now that Bi+1 > B0 then m∗
i+1 = 1. It follows from (B-24) and the induction

hypothesis that

M∑

j=1

x∗ij =
M∑

j=1

x∗i+1j < Bi+1.

But since Bi ≥ Bi+1, we conclude that
∑M

j=1 x
∗
ij < Bi. □

Proof of Proposition 2: Recall from Corollary 1 that for fixed N

X∗
j (N) = βj


 n∗

j (N)Rj

1 + n∗
j (N)

−
n∗
j (N)∑

k=1

H(Bk(N))

k(k + 1)


 ,

where n∗
j (N) = max

{
i ∈ [N ] such that Bi(N) > Bj

}
and Bi(N) = i Bi(N) +

∑N
k=iBk(N). Note

that B1(N) = B1(N)+
∑N

i=1Bi(N) = B1(N)+BC and so limN→∞ B1(N) = BC. Thus, we have that

limN→∞X∗
j (N) = 0 for all j ∈ [M ] such that Bj ≥ BC, i.e., for all j < k∗ = min{j ≥ 1: Bj < BC}.

Suppose j ≥ k∗ and let ϵ > 0 be such that BC − ϵ > Bk∗. We define

nϵ(N) := max
{
n ∈ [N ] such that Bi(N) ≥ BC − ϵ for all i ≤ n

}
.

Since B1(N) = B1(N) +BC we have that nϵ(N) ≥ 1 for all N .

We next show that limN→∞ nϵ(N) = ∞. We prove this claim by contradiction. Suppose, oth-

erwise, that there exists an increasing integer-valued sequence {Nk} and an integer n̄ϵ such that

limk→∞Nk = ∞ and limk→∞ nϵ(Nk) = n̄ϵ. It follows that there exists an integer k̄ϵ such that

nϵ(Nk) = n̄ϵ for all k ≥ k̄ϵ and so Bn̄ϵ+1(Nk) < BC − ϵ for all k ≥ k̄ϵ. But, for k sufficiently large

Bn̄ϵ+1(Nk) = (n̄ϵ + 1)Bn̄ϵ+1(Nk) +

Nk∑

i=n̄ϵ+1

Bi(Nk) = (n̄ϵ + 1)Bn̄ϵ+1(Nk)−
n̄ϵ∑

i=1

Bi(Nk) +

Nk∑

i=1

Bi(Nk).

Taking limit as k → ∞ and noticing that n̄ϵ is finite (independent of k) and Bi(Nk) ↓ 0 as Nk goes

to infinity, we get

lim
k→∞

Bn̄ϵ+1(Nk) = lim
k→∞

Nk∑

i=1

Bi(Nk) = BC > BC − ϵ.
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But this contradicts Bn̄ϵ+1(Nk) < BC − ϵ for all k ≥ k̄ϵ. We conclude that limN→∞ nϵ(N) = ∞. As

a direct consequence we get that limN→∞ n∗
j (N) = ∞ for all j ≥ k∗ since n∗

j (N) ≥ nϵ(N). Thus,

for j ≥ k∗

X∗
j (N) = βj


 n∗

j (N)Rj

1 + n∗
j (N)

−
nϵ(N)∑

k=1

H(Bk(N))

k(k + 1)
−

n∗
j (N)∑

k=nϵ(N)+1

H(Bk(N))

k(k + 1)


 .

From this expression and the facts that (i) H(Bk(N)) ≤ H(0) = aM < ∞ for all k and N and (ii)

nϵ(N) → ∞ and n∗
j (N) → ∞ as N → ∞, we get that

lim
N→∞

X∗
j (N) = wj


Rj − lim

N→∞

nϵ(N)∑

k=1

H(Bk(N))

k(k + 1)


 .

But, BC − ϵ ≤ Bk(N) ≤ B1(N) = B1(N) +BC for all k ≤ nϵ(N). It follows that

βj
(
Rj −H(BC − ϵ)

)
≤ lim

N→∞
X∗

j (N) ≤ βj
(
Rj −H(BC)

)
.

From the continuity of H, letting ϵ ↓ 0 we conclude that

lim
N→∞

X∗
j (N) ≤ βj

(
Rj −H(BC)

)
for all j ≥ k∗. □
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C Appendix: Nonlinear Inverse-Demand Functions

In this appendix we consider how our analysis of the budget-constrained retailers’ game might

extend when the inverse demand functions are non-linear. In Appendix C.1 we show by way of

a counter-example that in general a unique Cournot equilibrium need not exist when the inverse

demand functions are piece-wise linear. Then in Appendix C.2 we consider non-linear inverse-

demand functions that are concave and continuously differentiable. We provide a characterization of

any Cournot equilibrium in this setting and explain how they might be used to find an equilibrium.

C.1 Multiple Equilibria with Piece-wise Constant Inverse Demand Functions

We begin by showing that it’s no longer true in general that a unique Cournot equilibrium exists

when we drop the assumption of linear inverse-demand functions. We illustrate this point with a

concrete example that considers a simple piecewise linear inverse-demand function.

Example 1 Consider a problem with two identical firms (N = 2) with budgets B1 = B2 = 500

and one market (M = 1) with a piecewise linear demand function given by

r(X) =

{
4700− 8X if X ≤ 500

1200−X if X ≥ 500,

where X is the total budget allocated by both firms, that is, X = x1 + x2 with 0 ≤ xi ≤ Bi for

i = 1, 2. We will show that in this situation, there exist two Cournot equilibria: one with X∗ < 500

and the other one with X∗ > 500. Towards this end, let us consider two cases:

Case (a): Suppose the inverse-demand function is actually linear and equal to ra(X) =

4700− 8X for all X ≥ 0. Then, we can apply the result in Corollary 1 in the paper to get a

unique Cournot equilibrium in which the budget allocation of the two firms equals

x∗1 = x∗2 = x∗a =
(1/8) (4700−H(1500))+

3
.

Furthermore, H(1500) = inf
{
z ≥ 0 such that (1/8) (4700− z)+ ≤ 1500

}
= 0. It follows that

x∗a = 195.83̄ and the cumulative output is X∗
a = 2x∗a = 391.6̄ < 500.

To show that the output (x∗1, x
∗
2) = (x∗a, x

∗
a) is in fact an equilibrium for the original problem

we need to show that it is optimal for a firm to choose x∗a if the other firm chooses x∗a when

the demand function is given by the piecewise linear function r(X) as above. In other words,

that x∗a satisfies

x∗a = argmax
x

r(x∗a + x)x subject to 0 ≤ x ≤ B = 500.

Figure 4(a) depicts the value of r(x∗a+x)x in the range x ∈ [0, 500]. As we can see the global

maximum of r(x∗a + x)x is achieved when x = x∗a = 195.83̄.

Case (b): Again assume momentarily that the inverse-demand function is linear and equal

to rb(X) = 1200 −X for all X ≥ 0. Again, we can apply the result in Corollary 1 to get a
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unique Cournot equilibrium in which the budget allocation of the two firms equals

x∗1 = x∗2 = x∗b =
(1200−H(1500))+

3
.

In this case, H(1500) = inf
{
z ≥ 0 such that (1200 − z)+ ≤ 1500

}
= 0. It follows that

x∗b = 400 and the cumulative output is X∗
b = 2x∗b = 800 > 500.

As in the previous case, to prove that (x∗1, x
∗
2) = (x∗b , x

∗
b) is an equilibrium for the original

problem we need to show that

x∗b = argmax
x

r(x∗b + x)x subject to 0 ≤ x ≤ B = 500.

Figure 4(b) depicts the value of r(x∗a + x)x in the range x ∈ [0, 500]. We can see that the

optimal solution in this case is x∗b = 400.
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Figure 4: Best response functions for Cases (a) and (b) in Example 1.

We conclude that with the piecewise linear demand function r(X), there are two equilibria (x∗1, x
∗
2) =

(x∗a, x
∗
a) and (x∗1, x

∗
2) = (x∗b , x

∗
b). □

Example 1 shows that if we relax the assumption of linear inverse-demand functions then in general

we can no longer guarantee a unique Cournot equilibrium exists. Nonetheless, we can still prove

the existence of an equilibrium and partly characterize it under some additional assumptions on

the inverse-demand functions. This is the topic of Appendix C.2.

C.2 Characterizing Equilibria with Non-Linear Concave Demand Functions

As in the linear model presented in Section 3, we will use xij to denote the budget that firm

i ∈ [N ] allocates to market j ∈ [M ]. Retailer i’s profit in market j is equal to rj(Xj)xij , where
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Xj :=
∑N

i=1 xij is the total budget allocated to market j by all N retailers. We also continue to

assume the retailers’ budgets are ordered so that B1 ≥ B2 ≥ · · · ≥ BN > 0. We will make the

following assumption.

Assumption C.1 For all j ∈ [M ] there exists Xj > 0 such that the market return rj(x) is

a continuously differentiable non-negative strictly decreasing and concave function in [0, Xj) and

rj(x) ≤ 0 for x ≥ Xj > 0.

We define X := [0, X1] × · · · × [0, XN ] to be the set of admissible aggregate budget allocations.

Recall that Xij− = Xj−xij denotes the total budget allocated to market j by all retailers except for

retailer i and define Xi− := (Xi1− . . . XiM−). Also, for a given value Xi−, retailer i’s best-response
budget-allocation strategy {x∗ij(Xi−)}j∈[M ] solves the optimization problem:

Πi(Xi−) := max
xij≥0

M∑

j=1

rj(Xij− + xij)xij subject to
M∑

j=1

xij ≤ Bi. (C-1)

For the sake of completeness, we also recall our definition of a Cournot equilibrium.

Definition C.1 Consider a collection of markets M := {rj(·) : j ∈ [M ]} and a set of N retailers

with budgets B = (B1, . . . , BN ). A Cournot equilibrium is a set of budget allocations {x∗ij}j∈[M ]

for i = 1, . . . , N chosen by the retailers so that:

(i) {x∗ij}j∈[M ] solves the optimization problem (C-1) for i = 1, . . . , N .

(ii) They satisfy the fixed-point condition:

Xij− =
∑

k ̸=i

x∗kj(Xk−) for all i = 1, . . . , N and j = 1, . . . ,M. (C-2)

We have the following proposition which, in addition to guaranteeing the existence of an equilibrium,

characterizes any Cournot equilibrium.

Proposition C.1 Consider a collection of markets M := {rj(·) : j ∈ [M ]} satisfying the condi-

tions in Assumption C.1. Suppose
{
Xj

}
j∈[M ]

and
{
λ̂i

}
i∈[N ]

satisfy

Xj r
′
j(Xj) +

N∑

i=1

(
rj(Xj)− λ̂+

i

)+
= 0 j ∈ [M ] (C-3)

and

Bi +

M∑

j=1

(rj(Xj)− λ̂i)
+

r′j(Xj)
= 0 i ∈ [N ]. (C-4)

Then, the budget allocations

xij = −
(
rj(Xj)− λ̂+

i

)+

r′j(Xj)
, i ∈ [N ], j ∈ [M ] (C-5)

constitute a Cournot equilibrium. Furthermore, there always exists a Cournot equilibrium.
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Proof of Proposition C.1: Under Assumption C.1 retailer’s i best response problem in (C-1) is a

concave optimization problem. As a result, we can we use the following first-order KKT conditions to

characterize an optimal solution.

xij r
′
j(Xj) + rj(Xj) + βij − λi = 0 (first-order optimality condition)

M∑

j=1

xij ≤ Bi, xij ≥ 0 (primal feasibility) (KKT)

λi ≥ 0, βij ≥ 0 (dual feasibility)

λi

(
Bi −

M∑

j=1

xij

)
= 0, βijxij = 0, (complementary slackness)

where λi and βij are the Lagrange multipliers of retailer’s i budget constraint and non-negative constraint

xij ≥ 0, respectively.

Combining the first-order optimality condition together with the second complementary slackness con-

dition βijxij = 0, the non-negativity of xij and the fact that r′j(Xj) < 0 (by Assumption C.1) we see

that

xij =
(rj(Xj)− λi)

+

−r′j(Xj)
.

Summing over i ∈ [N ] we get that at optimality

Xj r
′
j(Xj) +

N∑

i=1

(
rj(Xj)− λi

)+
= 0 j ∈ [M ]. (C-6)

Let use define λ̂i to be unique the solution of

Bi +

M∑

j=1

(rj(Xj)− λ̂i)
+

r′j(Xj)
= 0, (C-7)

Then, combining the value of xij above and the first complementary slackness condition we obtain

λi


Bi +

M∑

j=1

(rj(Xj)− λi)
+

r′j(Xj)


 = 0 =⇒ λi = λ̂+

i .

It follows that we can rewrite (C-6) as

Xj r
′
j(Xj) +

N∑

i=1

(
rj(Xj)− λ̂+

i

)+
= 0 j ∈ [M ]. (C-8)

In sum, if
{
Xj

}
j∈[M ]

and
{
λ̂i

}
i∈[N ]

jointly solve (C-7)-(C-8) then

xij =
(rj(Xj)− λ̂+

i )
+

−r′j(Xj)
, λi = λ̂+

i and βij = λi − rj(Xj)− xij , r
′
j(Xj) i ∈ [N ], j ∈ [M ]
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solve the first-order KKT conditions.

To prove the existence of
{
Xj

}
j∈[M ]

and
{
λ̂i

}
i∈[N ]

that solve (C-7)-(C-8), we invoke Brouwer’s fixed-

point theorem. To this end, we define (implicitly) the following continuous mappings:

� F : X → RN such that for X ∈ X the vector λ̂ = F (X) solves (C-7). The fact that F is a well-

defined continuous mapping follows from the fact that for a given Xj the left-hand side in (C-7)

is continuously increasing from from −∞ to Bi > 0 as λ̂i increasing from −∞ to maxj{rj(Xj)}.

� G : RN → X such that for λ̂ ∈ RN the vector X = G(λ̂) solves (C-8). To see that the mapping

G is also well-defined note that the left-hand side of (C-8) is monotonically decreasing from∑
i∈[N ](rj(0)− λ̂+

i )
+ to X̄j r

′
j(X̄j) < 0 as Xj increases from 0 to X̄j .

As a result, G ◦F : X → X is a continuous mapping from the convex compact set X into itself and by

Brouwer’s fixed-point theorem there exists a fixed point X∗ ∈ X such that X∗ = G ◦F (X∗). It follows
that X∗ and λ̂∗ = F (X∗) solves (C-7)-(C-8) and therefore define a Cournot equilibrium. □

Recall that we have ranked the value of the retailers budgets so that B1 ≥ B2 ≥ · · · ≥ BN . The

following corollary follows directly from (C-7):

Corollary C.1 The values
{
λ̂i

}
i∈[N ]

in Proposition C.1 satisfy λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂N . As a result,

the budget allocations in a Cournot equilibrium satisfy x1j ≥ x2j · · · · ≥ xNj for all j ∈ [M ].

C.2.1 An Iterative Scheme to Find a Cournot Equilibrium

Note that it is very easy to iterate on (C-3) and (C-4) to try and find a fixed point, i.e. an

equilibrium. For a fixed aggregate allocation Xj , then solving for the λ̂i’s via (C-4) requires

numerically solving N separate 1-dimensional equations. Moreover, for each i, it is easy to check

if λ̂i < 0 (in which case we can find a closed-form expression for it), and if it’s not then we can

do a simple binary search for λ̂i ∈ [0, maxj rj(Xj)]. Once the λ̂i’s have been found we can then

solve (C-3) for the Xj ’s. This is easy to do since (C-3) will decouple into M separate 1-dimensional

equations. Again, it is easy to see that a binary search on Xj ∈ [0, Xj ] will suffice to solve for each

Xj . We could initialize the search easily, for example by setting λ̂i = 0 for all i or setting Xj = 0

for all j . Alternatively, we could set the Xj ’s according to a central planner’s solution.

While we cannot guarantee that this iterative scheme will converge, in unreported numerical exper-

iments we found it to converge very rapidly to the unique Cournot equilibrium when we assumed

linear inverse-demand functions.
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