IEOR E4602: Quantitative Risk Management

Introduction to Time Series Models and GARCH

Martin Haugh

Department of Industrial Engineering and Operations Research
Columbia University

Email: martin.b.haugh@gmail.com

A (Very) Brief Introduction to GARCH Models

- Let r_t denote the \log -return of a portfolio between periods t-1 and t and let \mathcal{F}_t denote the *information filtration* generated by these returns.
- We assume

$$r_t = \mu_t + a_t \tag{1}$$

where $E[r_t \mid \mathcal{F}_{t-1}] = \mu_t$ and

$$\sigma_t^2 := \operatorname{Var}(r_t \mid \mathcal{F}_{t-1}) = \operatorname{Var}(a_t \mid \mathcal{F}_{t-1}). \tag{2}$$

- Note that μ_t and σ_t are known at time t-1 and are therefore predictable processes.
- Common to assume that μ_t follows a stationary time series model such as an ARMA(m,s) process in which case

$$\mu_t = \phi_0 + \sum_{i=1}^m \phi_i r_{t-i} + \sum_{i=1}^s \gamma_j a_{t-j}$$
 (3)

where the ϕ_i 's and γ_i 's are parameters to be estimated.

A (Very) Brief Introduction to GARCH Models

- Note that a_t is the *innovation* or random component of the *log*-return and in practice, the conditional variance of this innovation, σ_t^2 , is time varying and stochastic.
- GARCH models may be used to model this dynamics behavior of conditional variances.
- ullet In particular, we say σ_t^2 follows a GARCH(p,q) model if

$$a_t = \sigma_t \, \epsilon_t \tag{4}$$

and
$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i a_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2$$
 (5)

where $\alpha_0 > 0$, $\alpha_i \ge 0$ for $i = 1, \dots, p$, $\beta_j \ge 0$ for $j = 1, \dots, q$ and where the ϵ_t 's are IID random variables with mean zero and variance one.

ullet It should be clear from (4) and (5) that the volatility clustering effect we observe in the market-place is therefore captured by the GARCH(p,q) model.

A (Very) Brief Introduction to GARCH Models

- Fat tails are also captured by this model in the sense that the log-returns in (1) have heavier tails (when a_t satisfies (4) and (5)) than the corresponding normal distribution
- GARCH models are typically estimated jointly with the conditional mean equation in (3) using maximum likelihood techniques.
- The fitted model can then be checked for goodness-of-fit using standard diagnostic methods
 - see, for example, Ruppert (2011) or Tsay (2010).

The GARCH(1,1) Model

- The $\mathsf{GARCH}(1,1)$ is obtained when we take p=q=1 in (5) and it is the most commonly used GARCH model in practice.
- It is not too difficult to see that the GARCH(1,1) model is stationary if and only $\alpha_1+\beta_1<1$
 - in this case the unconditional variance, θ , is given by

$$\theta = \frac{\alpha_0}{1 - \alpha_1 - \beta_1}.$$

Exercise: Assuming $\alpha_1 + \beta_1 < 1$ show that we may write

$$\sigma_{t+1}^2 = \kappa \theta + (1 - \kappa) \left[(1 - \lambda) a_t^2 + \lambda \sigma_t^2 \right]$$
 (6)

for some constants κ and λ . What are the values of κ and λ ?

Forecasting with the GARCH(1,1) Model

• Noting that $\mathsf{E}[r_{t+1}^2 \mid \mathcal{F}_t] = \sigma_{t+1}^2$ we can use (6) to obtain

$$\begin{split} \mathsf{E}[\sigma_{t+2}^{2} \mid \mathcal{F}_{t}] &= \kappa \theta + (1 - \kappa) \left[(1 - \lambda) \mathsf{E}[a_{t+1}^{2} \mid \mathcal{F}_{t}] + \lambda \sigma_{t+1}^{2} \right] \\ &= \kappa \theta + (1 - \kappa) \sigma_{t+1}^{2} \end{split} \tag{7}$$

• A similar argument then shows that (7) generalizes to

$$\mathsf{E}[\sigma_{t+n}^2 \mid \mathcal{F}_t] = \kappa \theta \left[1 + (1-\kappa) + \dots + (1-\kappa)^{n-2} \right] + (1-\kappa)^{n-1} \sigma_{t+1}^2 (8)$$

• It follows from (8) (why?) that $\mathbf{E}[\sigma_{t+n}^2 \mid \mathcal{F}_t] \to \theta$ as $n \to \infty$ so that θ is the best estimate of the long-term conditional variance.

Forecasting with the GARCH(1,1) Model

- Assuming we know σ_1^2 we can use (6) repeatedly together with the observed returns, i.e. the r_i 's, for $i=1,\ldots,t$, and the ML estimates of κ , θ , λ and the μ_t 's to compute an estimate of σ_{t+1} at time t.
- In practice we do not know σ_1^2 and so we typically replace it with the ML estimate of the unconditional variance, θ , or an estimate of the sample variance of the a_t 's.
- We can then use (8) to forecast return variances n periods ahead.
- Forecasts of the mean return n periods ahead can be computed in a similar manner by working with the conditional mean equations of (1) and (3).

Applications to Risk Management

- Time series models can be used to estimate conditional loss distributions as well as risk measures associated with these loss distributions.
- To do this, we need to be able to construct a time series of historical returns on a portfolio assuming the current portfolio composition.
- Whether or not this is possible will depend on whether historical return data is available for the individual securities in the portfolio.
- More generally, we need historical data for the changes in the risk factors,
 X, that drive the portfolio loss distribution.
- This data is usually available for equities, currencies, futures and government bonds.
- It is also often available for exchange-traded derivatives but is generally not available for OTC securities, structured products and other exotic securities.

Estimating Risk Measures

- If we assume that historical data for the changes in the risk factors, X, are available then we can use this data to construct a time series of portfolio returns assuming the current portfolio composition.
- We can then fit a time series model to these portfolio returns and use the fitted model to estimate risk measures such as VaR or ES.
- Suppose for example that today is date t and we wish to estimate the portfolio VaR over the period t to t+1.
- Our fitted time series model will then take the form

$$r_{t+1} = \hat{\mu}_{t+1} + a_{t+1}$$
 (9)
 $a_{t+1} = \hat{\sigma}_{t+1} \epsilon_{t+1}$ (10)

where $\hat{\mu}_{t+1}$ and $\hat{\sigma}_{t+1}$ are the time t estimates of the next periods mean log-return and volatility.

 They are obtained of course from the MLE estimates of the fitted time series model.

Estimating Risk Measures

- In our earlier setup, we would obtain $\hat{\mu}_{t+1}$ and $\hat{\sigma}_{t+1}$ from the fitted versions of (3) and (5), respectively.
- We could now use (9) and (10) to obtain the desired risk measures.
- For example, we could estimate the current period's \hat{VaR}_{α} and \hat{ES}_{α} according to

$$\hat{\mathsf{VaR}}_{\alpha}^{t} = \hat{\mu}_{t+1} + \hat{\sigma}_{t+1} \ q_{\alpha}(\epsilon_{t+1}) \tag{11}$$

$$\hat{\mathsf{ES}}_{\alpha}^{t} = \hat{\mu}_{t+1} + \hat{\sigma}_{t+1} \, \mathsf{ES}_{\alpha}(\epsilon_{t+1}). \tag{12}$$

The distribution of ϵ_{t+1} will have been estimated when the time-series of portfolio returns was fitted.

- Note that (11) and (12) are estimates of loss measures based on the conditional loss distribution
 - therefore expect them to be considerably more accurate than estimates based on the unconditional loss distribution, particularly over short horizons.

Combining Time Series Models with Factor Models

- Let \mathbf{X}_{t+1} represent the changes in n risk factors between periods t and t+1.
- Suppose also that we have a factor model of the form

$$\mathbf{X}_{t+1} = \mu + \mathbf{B} \mathbf{F}_{t+1} + \epsilon_{t+1} \tag{13}$$

where \mathbf{B} is an $n \times k$ matrix of factor loadings, \mathbf{F}_{t+1} is a $k \times 1$ vector of factor returns and ϵ_{t+1} is an $n \times 1$ random vector of idiosyncratic error terms which are uncorrelated and have mean zero.

- We also assume k < n, that \mathbf{F}_{t+1} has a positive-definite covariance matrix and that each component of \mathbf{F}_{t+1} is uncorrelated with each component of ϵ_{t+1} .
- All of these statements are conditional upon the information available at time t. Equation (13) is then a factor model for X.
- ullet Given time series data on ${\bf X}_t$ we could use the factor model to compute a univariate time series of portfolio losses and then estimate risk measures as described earlier.

Combining Time Series Models with Factor Models

- An alternative approach, however, would be to fit separate time series models to each factor, i.e. each component of X.
- We could still use the fitted time series models to estimate conditional loss measures as in (11) and (12) but we could also use the factor model to perform a scenario analysis, however.
- In particular, we could use the fitted time series models to provide guidance on the range of plausible factor stresses.
- For example, we could use PCA to construct a factor model and then fit a separate GARCH model to the time series of each principal component.
- The estimated conditional variance of each principal component could then be used to determine the range of factor stresses
 - in contrast to the method of using the eigen values to determine the range of factor stresses
 - which is an unconditional approach.

Computing Dynamic Risk Measures Using EVT

- Can also combine extreme value theory (EVT) with time series methods to estimate the tails of conditional loss distributions.
- Suppose for example, that we have fitted a model such as a GARCH or ARMA / GARCH model to a time series of portfolio returns and have used the fitted model to compute risk measures as in (11) and (12).
- These estimates will have been obtained assuming that the ϵ_t 's are IID with some fixed distribution such as the normal or t distribution.
- Can use the fitted time series to compute the residuals, $\hat{\epsilon}_t$, which should be approximately IID if the fitted time series model is a good fit.
- Can then apply EVT to the fitted residuals.

Computing Dynamic Risk Measures Using EVT

• In particular, can fit the GPD to the tails of the fitted residuals and estimate the corresponding risk measures to again obtain

$$\hat{\mathsf{VaR}}_{\alpha}^{t} = \hat{\mu}_{t+1} + \hat{\sigma}_{t+1} \ q_{\alpha}(\epsilon_{t+1}^{\mathsf{GPD}}) \tag{14}$$

$$\hat{\mathsf{ES}}_{\alpha}^{t} = \hat{\mu}_{t+1} + \hat{\sigma}_{t+1} \, \mathsf{ES}_{\alpha}(\epsilon_{t+1}^{\mathsf{GPD}}) \tag{15}$$

where the superscript GPD in (14) and (15) is used to emphasize that the ϵ_t 's (or their tails), follow a GPD distribution.

- Note that there appears to be an inconsistency here in that the original time series model was fitted using one set of assumptions for the ϵ_t 's, i.e. that they are normally or t distributed, and that a different assumption is used in (14) and (15), i.e. that they have a GPD distribution.
- This does not present a problem due to the theory of quasi-maximum likelihood estimation (QMLE) which effectively states that $\hat{\mu}_{t+1}$ and $\hat{\sigma}_{t+1}$ are still consistent estimators of μ_{t+1} and σ_{t+1} even though the distributions of the ϵ_t 's were misspecified.