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A (Very) Brief Introduction to GARCH Models
Let rt denote the log-return of a portfolio between periods t − 1 and t and
let Ft denote the information filtration generated by these returns.

We assume
rt = µt + at (1)

where E[rt | Ft−1] = µt and

σ2
t := Var (rt | Ft−1) = Var (at | Ft−1) . (2)

Note that µt and σt are known at time t − 1 and are therefore predictable
processes.

Common to assume that µt follows a stationary time series model such as
an ARMA(m, s) process in which case

µt = φ0 +
m∑

i=1
φirt−i +

s∑
j=1

γjat−j (3)

where the φi ’s and γj ’s are parameters to be estimated.
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A (Very) Brief Introduction to GARCH Models
Note that at is the innovation or random component of the log-return and in
practice, the conditional variance of this innovation, σ2

t , is time varying and
stochastic.

GARCH models may be used to model this dynamics behavior of conditional
variances.

In particular, we say σ2
t follows a GARCH(p, q) model if

at = σt εt (4)

and σ2
t = α0 +

p∑
i=1

αia2
t−i +

q∑
j=1

βjσ
2
t−j (5)

where α0 > 0, αi ≥ 0 for i = 1, . . . , p, βj ≥ 0 for j = 1, . . . , q and where
the εt ’s are IID random variables with mean zero and variance one.

It should be clear from (4) and (5) that the volatility clustering effect we
observe in the market-place is therefore captured by the GARCH(p, q) model.
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A (Very) Brief Introduction to GARCH Models
Fat tails are also captured by this model in the sense that the log-returns in
(1) have heavier tails (when at satisfies (4) and (5)) than the corresponding
normal distribution.

GARCH models are typically estimated jointly with the conditional mean
equation in (3) using maximum likelihood techniques.
The fitted model can then be checked for goodness-of-fit using standard
diagnostic methods

see, for example, Ruppert (2011) or Tsay (2010).

4 (Section 1)



The GARCH(1, 1) Model
The GARCH(1, 1) is obtained when we take p = q = 1 in (5) and it is the
most commonly used GARCH model in practice.
It is not too difficult to see that the GARCH(1, 1) model is stationary if and
only α1 + β1 < 1

in this case the unconditional variance, θ, is given by

θ = α0

1 − α1 − β1
.

Exercise: Assuming α1 + β1 < 1 show that we may write

σ2
t+1 = κθ + (1− κ)

[
(1− λ)a2

t + λσ2
t
]

(6)

for some constants κ and λ. What are the values of κ and λ?
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Forecasting with the GARCH(1, 1) Model
Noting that E[r2

t+1 | Ft ] = σ2
t+1 we can use (6) to obtain

E[σ2
t+2 | Ft ] = κθ + (1− κ)

[
(1− λ)E[a2

t+1 | Ft ] + λσ2
t+1
]

= κθ + (1− κ)σ2
t+1 (7)

A similar argument then shows that (7) generalizes to

E[σ2
t+n | Ft ] = κθ [1 + (1− κ) + · · ·+ (1− κ)n−2] + (1− κ)n−1σ2

t+1.(8)

It follows from (8) (why?) that E[σ2
t+n | Ft ]→ θ as n →∞ so that θ is the

best estimate of the long-term conditional variance.
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Forecasting with the GARCH(1, 1) Model
Assuming we know σ2

1 we can use (6) repeatedly together with the observed
returns, i.e. the ri ’s, for i = 1, . . . , t, and the ML estimates of κ, θ, λ and
the µt ’s to compute an estimate of σt+1 at time t.

In practice we do not know σ2
1 and so we typically replace it with the ML

estimate of the unconditional variance, θ, or an estimate of the sample
variance of the at ’s.

We can then use (8) to forecast return variances n periods ahead.

Forecasts of the mean return n periods ahead can be computed in a similar
manner by working with the conditional mean equations of (1) and (3).
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Applications to Risk Management
Time series models can be used to estimate conditional loss distributions as
well as risk measures associated with these loss distributions.

To do this, we need to be able to construct a time series of historical returns
on a portfolio assuming the current portfolio composition.

Whether or not this is possible will depend on whether historical return data
is available for the individual securities in the portfolio.

More generally, we need historical data for the changes in the risk factors,
X, that drive the portfolio loss distribution.

This data is usually available for equities, currencies, futures and government
bonds.

It is also often available for exchange-traded derivatives but is generally not
available for OTC securities, structured products and other exotic securities.
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Estimating Risk Measures
If we assume that historical data for the changes in the risk factors, X, are
available then we can use this data to construct a time series of portfolio
returns assuming the current portfolio composition.

We can then fit a time series model to these portfolio returns and use the
fitted model to estimate risk measures such as VaR or ES.

Suppose for example that today is date t and we wish to estimate the
portfolio VaR over the period t to t + 1.

Our fitted time series model will then take the form

rt+1 = µ̂t+1 + at+1 (9)
at+1 = σ̂t+1 εt+1 (10)

where µ̂t+1 and σ̂t+1 are the time t estimates of the next periods mean
log-return and volatility.

They are obtained of course from the MLE estimates of the fitted time series
model.
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Estimating Risk Measures
In our earlier setup, we would obtain µ̂t+1 and σ̂t+1 from the fitted versions
of (3) and (5), respectively.

We could now use (9) and (10) to obtain the desired risk measures.

For example, we could estimate the current period’s ˆVaRα and ÊSα

according to

ˆVaR
t
α = µ̂t+1 + σ̂t+1 qα(εt+1) (11)

ÊS
t
α = µ̂t+1 + σ̂t+1 ESα(εt+1). (12)

The distribution of εt+1 will have been estimated when the time-series of
portfolio returns was fitted.
Note that (11) and (12) are estimates of loss measures based on the
conditional loss distribution

therefore expect them to be considerably more accurate than estimates based
on the unconditional loss distribution, particularly over short horizons.
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Combining Time Series Models with Factor Models

Let Xt+1 represent the changes in n risk factors between periods t and
t + 1.

Suppose also that we have a factor model of the form

Xt+1 = µ + B Ft+1 + εt+1 (13)

where B is an n × k matrix of factor loadings, Ft+1 is a k × 1 vector of
factor returns and εt+1 is an n × 1 random vector of idiosyncratic error
terms which are uncorrelated and have mean zero.

We also assume k < n, that Ft+1 has a positive-definite covariance matrix
and that each component of Ft+1 is uncorrelated with each component of
εt+1.

All of these statements are conditional upon the information available at
time t. Equation (13) is then a factor model for X.

Given time series data on Xt we could use the factor model to compute a
univariate time series of portfolio losses and then estimate risk measures as
described earlier.
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Combining Time Series Models with Factor Models

An alternative approach, however, would be to fit separate time series
models to each factor, i.e. each component of X.

We could still use the fitted time series models to estimate conditional loss
measures as in (11) and (12) but we could also use the factor model to
perform a scenario analysis, however.

In particular, we could use the fitted time series models to provide guidance
on the range of plausible factor stresses.

For example, we could use PCA to construct a factor model and then fit a
separate GARCH model to the time series of each principal component.
The estimated conditional variance of each principal component could then
be used to determine the range of factor stresses

in contrast to the method of using the eigen values to determine the range of
factor stresses

– which is an unconditional approach.
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Computing Dynamic Risk Measures Using EVT
Can also combine extreme value theory (EVT) with time series methods to
estimate the tails of conditional loss distributions.

Suppose for example, that we have fitted a model such as a GARCH or
ARMA / GARCH model to a time series of portfolio returns and have used
the fitted model to compute risk measures as in (11) and (12).

These estimates will have been obtained assuming that the εt ’s are IID with
some fixed distribution such as the normal or t distribution.

Can use the fitted time series to compute the residuals, ε̂t , which should be
approximately IID if the fitted time series model is a good fit.

Can then apply EVT to the fitted residuals.
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Computing Dynamic Risk Measures Using EVT
In particular, can fit the GPD to the tails of the fitted residuals and estimate
the corresponding risk measures to again obtain

ˆVaR
t
α = µ̂t+1 + σ̂t+1 qα(εGPD

t+1) (14)

ÊS
t
α = µ̂t+1 + σ̂t+1 ESα(εGPD

t+1) (15)

where the superscript GPD in (14) and (15) is used to emphasize that the
εt ’s (or their tails), follow a GPD distribution.

Note that there appears to be an inconsistency here in that the original time
series model was fitted using one set of assumptions for the εt ’s, i.e. that
they are normally or t distributed, and that a different assumption is used in
(14) and (15), i.e. that they have a GPD distribution.

This does not present a problem due to the theory of quasi-maximum
likelihood estimation (QMLE) which effectively states that µ̂t+1 and σ̂t+1
are still consistent estimators of µt+1 and σt+1 even though the distributions
of the εt ’s were misspecified.
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