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Joint and Marginal CDFs
Let X = (X1, . . .Xn) is an n-dimensional vector of random variables.

Definition (Joint CDF): For all x = (x1, . . . , xn)> ∈ Rn, the joint cumulative
distribution function (CDF) of X satisfies

FX(x) = FX(x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn).

Definition (Marginal CDF): For a fixed i, the marginal CDF of Xi satisfies

FXi (xi) = FX(∞, . . . ,∞, xi ,∞, . . .∞).

Straightforward to generalize to joint marginal distributions. e.g

Fij(xi , xj) = FX(∞, . . . ,∞, xi ,∞, . . . ,∞, xj ,∞, . . .∞).
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Conditional CDFs
If X has a probability density function (PDF) then

FX(x1, . . . , xn) =
∫ x1

−∞
· · ·
∫ xn

−∞
f (u1, . . . , un) du1 . . . dun.

A collection of random variables is independent if the joint CDF (or PDF if it
exists) can be factored into the product of the marginal CDFs (or PDFs).

If X1 = (X1, . . . ,Xk)> and X2 = (Xk+1, . . . ,Xn)> is a partition of X then the
conditional CDF satisfies

FX2|X1(x2|x1) = P(X2 ≤ x2|X1 = x1).

If X has a PDF, f (·), then it satisfies

FX2|X1(x2|x1) =
∫ xk+1

−∞
· · ·
∫ xn

−∞

f (x1, . . . , xk , uk+1, . . . , un)
fX1(x1) duk+1 . . . dun

where fX1(·) is the joint marginal PDF of X1.
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Mean Vector and Covariance Matrix
Assuming it exists, mean vector of X given by

E[X] := (E[X1] . . . E[Xn])> .

Again assuming it exists, the covariance matrix of X satisfies

Cov(X) := Σ := E
[
(X− E[X]) (X− E[X])>

]
so that the (i, j)th element of Σ is simply the covariance of Xi and Xj .

Important properties of Σ:
1. It is symmetric so that Σ> = Σ
2. Diagonal elements satisfy Σi,i ≥ 0
3. It is positive semi-definite so that x>Σx ≥ 0 for all x ∈ Rn.

The correlation matrix, ρ(X), has (i, j)th element ρij := Corr(Xi ,Xj)
- also symmetric, positive semi-definite
- has 1’s along the diagonal.

4 (Section 1)



Linear Combinations and Characteristic Functions
For any matrix A ∈ Rk×n and vector a ∈ Rk have

E [AX + a] = AE [X] + a (1)
Cov(AX + a) = A Cov(X) A>. (2)

The characteristic function of X given by

φX(s) := E
[
eis>X

]
for s ∈ Rn (3)

If it exists, the moment-generating function (MGF) is given by (3) with s
replaced by −is.
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The Multivariate Normal Distribution
If X multivariate normal with mean vector µ and covariance matrix Σ then write

X ∼ MNn(µ,Σ).

Standard multivariate normal: µ = 0 and Σ = In, the n × n identity matrix.

PDF of X given by

f (x) = 1
(2π)n/2|Σ|1/2 e− 1

2 (x−µ)> Σ−1(x−µ) (4)

where | · | denotes the determinant.

Characteristic function satisfies

φX(s) = E
[
eis>X

]
= eis>µ − 1

2 s>Σs.

6 (Section 2)



The Multivariate Normal Distribution
Let X1 = (X1, . . . ,Xk)> and X2 = (Xk+1, . . . ,Xn)> be a partition of X with

µ =
(

µ1
µ2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

Then marginal distribution of a multivariate normal random vector is itself
(multivariate) normal. In particular, Xi ∼ MN(µi ,Σii), for i = 1, 2.

Assuming Σ is positive definite, the conditional distribution of a multivariate
normal distribution is also a (multivariate) normal distribution. In particular,

X2 | X1 = x1 ∼ MN(µ2.1,Σ2.1)

where

µ2.1 = µ2 + Σ21 Σ−1
11 (x1 − µ1)

Σ2.1 = Σ22 −Σ21Σ−1
11 Σ12.
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Generating MN Distributed Random Vectors
Suppose we wish to generate X = (X1, . . . ,Xn) where X ∼ MNn(0,Σ)

- it is then easy to handle the case where E[X] 6= 0.

Let Z = (Z1, . . . ,Zn)> where Zi ∼ N(0, 1) and IID for i = 1, . . . ,n.

If C an (n ×m) matrix then

C>Z ∼ MN(0,C>C).

Problem therefore reduces to finding C such that C>C = Σ.

Usually find such a matrix, C, via the Cholesky decomposition of Σ.
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The Cholesky Decomposition of a Symmetric PD Matrix

Any symmetric positive-definite matrix, M, may be written as

M = U>DU

where:
U is an upper triangular matrix
D is a diagonal matrix with positive diagonal elements.

Since Σ is symmetric positive-definite, can therefore write

Σ = U>DU
= (U>

√
D)(
√

DU)
= (

√
DU)>(

√
DU).

C =
√

DU therefore satisfies C>C = Σ
- C is called the Cholesky Decomposition of Σ.
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The Cholesky Decomposition in Matlab
Easy to compute the Cholesky decomposition of a symmetric positive-definite
matrix in Matlab using the chol command

- so also easy to simulate multivariate normal random vectors in Matlab.

Sample Matlab Code
>> Sigma = [1.0 0.5 0.5;

0.5 2.0 0.3;
0.5 0.3 1.5];

>> C = chol(Sigma);
>> Z = randn(3,1000000);
>> X = C’*Z;
>> cov(X’)

ans =
0.9972 0.4969 0.4988
0.4969 1.9999 0.2998
0.4988 0.2998 1.4971
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The Cholesky Decomposition in Matlab and R
Must be very careful in Matlab and R to pre-multiply Z by C> and not C.

Some languages take C> to be the Cholesky Decomposition rather C
- must therefore always know what convention your programming language /

package is using.

Must also be careful that Σ is indeed a genuine variance-covariance matrix.
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Normal-Mixture Models
Normal-mixture models are a class of models generated by introducing
randomness into the covariance matrix and / or the mean vector:

Definition: The random vector X has a normal variance mixture if

X ∼ µ +
√

W AZ

where
(i) Z ∼ MNk(0, Ik)
(ii) W ≥ 0 is a scalar random variable independent of Z and
(iii) A ∈ Rn×k and µ ∈ Rn are a matrix and vector of constants, respectively.
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Normal-Mixture Models
If we condition on W , then X is multivariate normally distributed

- this observation also leads to an obvious simulation algorithm for generating
samples of X.

Typically interested in case when rank(A) = n ≤ k and Σ is a full-rank positive
definite matrix

- then obtain a non-singular normal variance mixture.

Assuming W is integrable, immediately see that

E[X] = µ and Cov(X) = E[W ] Σ

where Σ = AA>.

We call µ and Σ the location vector and dispersion matrix of the distribution.

Also clear that correlation matrices of X and AZ coincide
- implies that if A = In then components of X are uncorrelated though they

are not in general independent.
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Normal-Mixture Models
Lemma: Let X = (X1,X2) have a normal mixture distribution with A = I2,
µ = 0 and E[W ] <∞ so that Cov(X1,X2) = 0.

Then X1 and X2 are independent if and only if W is constant with probability 1.

Proof: (i) If W constant then immediately follows from independence of Z1 and
Z2 that X1 and X2 are also independent.

(ii) Suppose now X1 and X2 are independent. Note that

E[|X1| |X2|] = E[W |Z1| |Z2|] = E[W ] E[|Z1| |Z2|]

≥
(
E[
√

W ]
)2

E[|Z1| |Z2|]

= E[|X1|] E[|X2|]

with equality only if W is a constant.

But independence of X1 and X2 implies we must have equality and so W is
indeed constant almost surely. 2
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E.G. The Multivariate Two-Point Normal Mixture Model

Perhaps the simplest example of normal-variance mixture is obtained when W is
a discrete random variable.

If W is binary and takes on two values, w1 and w2 with probabilities p and 1− p,
respectively, then obtain the two-point normal mixture model.

Can create a two regime model by setting w2 large relative to w1 and choosing p
large

- then W = w1 can correspond to an ordinary regime
- and W = w2 corresponds to a stress regime.
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E.G. The Multivariate t Distribution
The multivariate t distribution with ν degrees-of-freedom (dof) is obtained when
we take W to have an inverse gamma distribution.

Equivalently, the multivariate t distribution with ν dof is obtained if ν/W ∼ χ2
ν

- the more familiar description of the t distribution.

We write X ∼ tn(ν,µ,Σ).

Note that Cov(X) = ν/(ν − 2)Σ
- only defined when ν > 2.

Can easily simulate chi-squared random variables so easy to simulate multivariate
t random vectors.

The multivariate t distribution plays an important role in risk management as it
often provides a very good fit to asset return distributions.
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Characteristic Function of a Normal Variance Mixture

We have

φX(s) = E
[
eis>X

]
= E

[
E
[
eis>X |W

]]
= E

[
eis>µ − 1

2 Ws>Σs
]

= eis>µ Ŵ
(

1
2s>Σs

)
where Ŵ (·) is the Laplace transform of W .

Sometimes use the notation X ∼ Mn

(
µ,Σ, Ŵ

)
.

17 (Section 3)



Affine Transformations of Normal Variance Mixtures

Proposition: If X ∼ Mn

(
µ,Σ, Ŵ

)
and Y = BX + b for B ∈ Rk×n and

b ∈ Rk then Y ∼ Mk

(
Bµ + b,BΣB>, Ŵ

)
.

So affine transformations of normal variance mixtures remain normal variance
mixtures

- useful when loss function is approximated with linear function of risk factors.

Proof is straightforward using characteristic function argument.
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Normal Mean-Variance Mixtures
Could also define normal mixture distributions where µ = m(W ).

Would still obtain that X is multivariate normal conditional on W .

Important class of normal mean-variance mixtures are the generalized hyperbolic
distributions. They:

are closed under addition
are easy to simulate
can be fitted using standard statistical techniques.

We will not study normal mean-variance mixtures in this course.
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Spherical Distributions
Recall that a linear transformation U ∈ Rn×n is orthogonal if
UU> = U>U = In.

Definition: A random vector X = (X1, . . . ,Xn) has a spherical distribution if

UX ∼ X (5)

for every orthogonal linear transformation, U ∈ Rn×n.

Note that (5) implies the distribution of X is invariant under rotations.

A better understanding of spherical distributions may be obtained from the
following theorem ….
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Spherical Distributions
Theorem: The following are equivalent:

1. X is spherical.

2. There exists a function ψ(·) such that for all s ∈ Rn,

φX(s) = ψ(s>s) = ψ(s2
1 + · · ·+ s2

n). (6)

3. For all a ∈ Rn

a>X ∼ ||a|| X1

where ||a||2 = a>a = a2
1 + · · ·+ a2

n.

(6) shows that characteristic function of a spherical distribution is completely
determined by a function, ψ(·), of a scalar variable.

ψ(·) is known as the generator of the distribution
- common to write X ∼ Sn(ψ).
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Example: Multivariate Normal
Let X ∼ MNn(0, In). Then

φX(s) = e− 1
2 s>s.

So X is spherical with generator ψ(s) = exp(− 1
2 s).
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Example: Normal Variance Mixtures
Suppose X ∼ Mn

(
0, In, Ŵ

)
- so X has a standardized, uncorrelated normal variance mixture.

Then part (2) of previous theorem implies that X is spherical with
ψ(s) = Ŵ (s/2).

Note there are spherical distributions that are not normal variance mixture
distributions.

Now for another important and insightful result . . .

23 (Section 4)



Spherical Distributions
Theorem: The random vector X = (X1, . . . ,Xn) has a spherical distribution if
and only if it has the representation

X ∼ R S

where:

1. S is uniformly distributed on the unit sphere: Sn−1 := {s ∈ Rn : s>s = 1}
and

2. R ≥ 0 is a random variable independent of S.
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Elliptical Distributions
Definition: The random vector X = (X1, . . .Xn) has an elliptical distribution if

X ∼ µ + A Y

where Y ∼ Sk(ψ) and A ∈ Rn×k and µ ∈ Rn are a matrix and vector of
constants, respectively.

Elliptical distributions therefore obtained via multivariate affine transformations
of spherical distributions.
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Characteristic Function of Elliptical Distributions
Easy to calculate characteristic function of an elliptical distribution:

φX(s) = E
[
eis>(µ+A Y)

]
= eis>µ E

[
ei(A>s)>Y

]
= eis>µ ψ

(
s>Σs

)
where as before Σ = AA>.

Common to write X ∼ En (µ,Σ, ψ)
µ known as the location vector
Σ known as the dispersion matrix.

But Σ and ψ only uniquely determined up to a positive constant.
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