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Principal Components Analysis
Let Y = (Y1 . . .Yn)> denote an n-dimensional random vector with
variance-covariance matrix, Σ.

Y represents (normalized) changes of risk factors over some appropriately chosen
time horizon.

These risk factors might be:

Security price returns
Returns on futures contracts of varying maturities or
Changes in spot interest rates, again of varying maturities.

Goal of PCA is to construct linear combinations of the Yi ’s

Pi :=
n∑

j=1
wij Yj for i = 1, . . . ,n

in such a way that ….
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Principal Components Analysis
(1) The Pi ’s are orthogonal so that E[PiPj ] = 0 for i 6= j

and

(2) The Pi ’s are ordered in such a way that:

(i) P1 explains the largest percentage of the total variability in the system
and
(ii) each Pi explains the largest percentage of the total variability in the
system that has not already been explained by P1, . . . ,Pi−1.
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Principal Components Analysis
In practice common to apply PCA to normalized random variables so that
E[Yi ] = 0 and Var(Yi) = 1

- can normalize by subtracting the means from the original random variables
and then dividing by their standard deviations.

We normalize to ensure no one component of Y can influence the analysis by
virtue of that component’s measurement units.

Will therefore assume the Yi ’s have already been normalized
- but common in financial applications to also work with non-normalized

variables if clear that components of Y all on similar scale.

Key tool of PCA is the spectral decomposition or (more generally) the singular
value decomposition (SVD) of linear algebra.
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Spectral Decomposition
The spectral decomposition states that any symmetric matrix, A ∈ Rn×n, can be
written as

A = Γ ∆ Γ> (1)

where:

(i) ∆ is a diagonal matrix, diag(λ1, . . . , λn), of the eigen values of A
- without loss of generality ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn .

(ii) Γ an orthogonal matrix with ith column of Γ containing ith standardized
eigen-vector, γi , of A.

“Standardized” means γ>
i γi = 1

Orthogonality of Γ implies Γ Γ> = Γ> Γ = In .
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Spectral Decomposition
Since Σ is symmetric can take A = Σ in (1).

Positive semi-definiteness of Σ implies λi ≥ 0 for all i = 1, . . . ,n.

The principal components of Y then given by P = (P1, . . . ,Pn) satisfying

P = Γ> Y. (2)

Note that:

(a) E[P] = 0 since E[Y] = 0
and

(b) Cov(P) = Γ> Σ Γ = Γ> (Γ ∆ Γ>) Γ = ∆

So components of P are uncorrelated and Var(Pi) = λi are decreasing in i as
desired.
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Factor Loadings
The matrix Γ> is called the matrix of factor loadings.

Can invert (2) to obtain
Y = Γ P (3)

- so easy to go back and forth between Y and P.
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Explaining The Total Variance
Can measure the ability of the first few principal components to explain the total
variability in the system:

n∑
i=1

Var(Pi) =
n∑

i=1
λi = trace(Σ) =

n∑
i=1

Var(Yi). (4)

If we take
∑n

i=1 Var(Pi) =
∑n

i=1 Var(Yi) to measure the total variability then by
(4) can interpret ∑k

i=1 λi∑n
i=1 λi

as the percentage of total variability explained by first k principal components.
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Explaining The Total Variance
Can also show that first principal component, P1 = γ>1 Y, satisfies

Var(γ>1 Y) = max
{
Var(a>Y) : a>a = 1

}
.

And that each successive principal component, Pi = γ>i Y, satisfies the same
optimization problem but with the added constraint that it be orthogonal, i.e.
uncorrelated, to P1, . . . ,Pi−1.
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Financial Applications of PCA
In financial applications, often the case that just two or three principal
components are sufficient to explain anywhere from 60% to 95% or more of the
total variability

- and often possible to interpret the first two or three components.

e.g. If Y represents (normalized) changes in the spot interest rate for n different
maturities, then:

1. 1st principal component can usually be interpreted as the (approximate)
change in overall level of the yield curve

2. 2nd component represents change in slope of the curve
3. 3rd component represents change in curvature of the curve.

In equity applications, first component often represents a systematic market
factor whereas the second (and possibly other) components may be identified
with industry specific factors.

But generally less interpretability with equity portfolios and 2 or 3 principal
components often not enough to explain most of overall variance.
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Empirical PCA
In practice do not know true variance-covariance matrix but it may be estimated
using historical data.

Suppose then we have multivariate observations, X1, . . .Xm

Xt = (Xt1 . . .Xtn)> represents the date t sample observation.

Important (why?) that these observations are from a stationary time series
e.g. asset returns or yield changes
But not price levels which are generally non-stationary.

If µj and σj are sample mean and standard deviation, respectively, of
{Xtj : t = 1, . . . ,m}, then can normalize by setting

Ytj = Xtj − µj

σj
for t = 1, . . . ,m and j = 1, . . . ,n.
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Empirical PCA
Let Σ be the sample variance-covariance matrix so that

Σ = 1
m

m∑
t=1

Yt Y>t .

Principal components, Pt , then computed using this covariance matrix.

From (3), see that original data obtained from principal components as

Xt = diag(σ1, . . . , σn) Yt + µ

= diag(σ1, . . . , σn) Γ Pt + µ (5)

where Pt := (Pt1 . . .Ptn)> = Γ>Yt is the tth sample principal component
vector.
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Applications of PCA: Building Factor Models
If first k principal components explain sufficiently large amount of total variability
then may partition the n × n matrix Γ according to Γ = [Γ1 Γ2] where Γ1 is
n × k and Γ2 is n × (n − k).

Similarly can write Pt = [P(1)
t P(2)

t ]> where P(1)
t is k × 1 and P(2)

t is
(n − k)× 1.

May then use (5) to write

Xt+1 = µ + diag(σ1, . . . , σn) Γ1 P(1)
t+1 + εt+1 (6)

where
εt+1 := diag(σ1, . . . , σn) Γ2 P(2)

t+1 (7)

represents an error term.

Can interpret (6) as a k-factor model for the changes in risk factors, X
- but then take εt+1 as an uncorrelated noise vector and ignore (7).
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Applications of PCA: Scenario Generation
Easy to generate scenarios using PCA.

Suppose today is date t and we want to generate scenarios over the period
[t, t + 1].

Can then use (6) to apply stresses to first few principal components, either singly
or jointly, to generate loss scenarios.

Moreover, know that Var(Pi) = λi so can easily control severity of the stresses.
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Applications of PCA: Estimating VaR and CVaR
Can use the k-factor model and Monte-Carlo to simulate portfolio returns.

Could be done by estimating joint distribution of first k principal components

e.g. Could assume (why?)

P(1)
t+1 ∼ MNk(0, diag(λ1, . . . , λk)).

but other heavy-tailed distributions may be more appropriate.

If we want to estimate the conditional loss distribution (as we usually do) of
P(1)

t+1 then time series methods such as GARCH models should be used.
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E.G. An Analysis of (Risk-Free) Yield Curves
We use daily yields on U.S. Treasury bonds at 11 maturities: T = 1, 3, and
6 months and 1, 2, 3, 5, 7, 10, 20, and 30 years.

Time period is January 2, 1990, to October 31, 2008.

We use PCA to study how the curves change from day to day.

To analyze daily changes in yields, all 11 time series were differenced.
Daily yields were missing from some values of T for various reasons

- e.g. the 20-year constant maturity series was discontinued at the end of 1986
and reinstated on October 1, 1993.

All days with missing values of the differenced data were omitted.
- this left 819 days of data starting on July 31, 2001, when the one-month

series started and ending on October 31, 2008, with the exclusion of the
period February 19, 2002 to February 2, 2006 when the 30-year Treasury was
discontinued.

The covariance matrix rather than the correlation matrix was used
- which is fine here because the variables are comparable and in the same units.
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Figure 18.1 from Ruppert and Matteson: (a) Treasury yields on three dates. (b) Scree plot for the changes
in Treasury yields. Note that the first three principal components have most of the variation, and the first five
have virtually all of it. (c) The first three eigenvectors for changes in the Treasury yields. (d) The first three
eigenvectors for changes in the Treasury yields in the range 0 ≤ T ≤ 3.



●
●

● ● ●
●

●

●

●

0 1 2 3 4 5 6 7

3.
0

3.
5

4.
0

4.
5

(a)

T

Y
ie

ld ●●
● ●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

mean
mean + PC1
mean −  PC1

●
●

● ● ●
●

●

●

0 1 2 3 4 5 6 7

3.
0

3.
5

4.
0

4.
5

(b)

T

Y
ie

ld

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

mean
mean + PC2
mean −  PC2

●
●

● ● ●
●

●

●

●

0 1 2 3 4 5 6 7

3.
0

3.
5

4.
0

4.
5

(c)

T

Y
ie

ld

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

mean
mean + PC3
mean −  PC3

●

●

●

●
●

●

●

●

●

●
●

0 5 10 15 20 25 30

−
0.

6
0.

0
0.

4

(d)

T

P
C ●

●

●

●

●
●

●
●

●

● ●

PC 4
PC 5

Figure 18.2 from Ruppert and Matteson: (a) The mean yield curve plus and minus the first eigenvector. (b)
The mean yield curve plus and minus the second eigenvector. (c) The mean yield curve plus and minus the
third eigenvector. (d) The fourth and fifth eigenvectors for changes in the Treasury yields.



E.G. An Analysis of (Risk-Free) Yield Curves
Would actually be interested in the behavior of the yield changes over time.
But time series analysis based on the changes in the 11 yields would be
problematic.

- better approach would be to use first three principal components.

Their time series and auto- and cross-correlation plots are shown in Figs.
18.3 and 18.4, respectively.

Notice that lag-0 cross-correlations are zero; this is not a coincidence! Why?
Cross-correlations at nonzero lags are not zero, but in this example they are
small

- practical implication is that parallel shifts, changes in slopes, and changes in
convexity are nearly uncorrelated and could be analyzed separately.

The time series plots show substantial volatility clustering which could be
modeled using GARCH models.
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Figure 18.3 from Ruppert and Matteson: Time series plots of the first three principal
components of the Treasury yields. There are 819 days of data, but they are not consecutive
because of missing data; see text.
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Figure 18.4 from Ruppert and Matteson: Sample auto- and cross-correlations of the first three principal
components of the Treasury yields.



Applications of PCA: Portfolio Immunization
Also possible to hedge or immunize a portfolio against moves in the principal
components.

e.g. Suppose we wish to hedge value of a portfolio against movements in the
first k principal components.

Let Vt = time t value of portfolio and assume our hedge will consist of positions,
φti , in the securities with time t prices, Sti , for i = 1, . . . , k.

Let Z(t+1)j be date t + 1 level of the jth risk factor

- so ∆Z(t+1)j = X(t+1)j using our earlier notation.

If change in value of hedged portfolio between dates t and t + 1 is denoted by
∆V ∗t+1, then we have ….
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Applications of PCA: Portfolio Immunization

∆V ∗t+1 ≈
n∑

j=1

(
∂Vt

∂Ztj
+

k∑
i=1

φti
∂Sti

∂Ztj

)
∆Z(t+1)j

=
n∑

j=1

(
∂Vt

∂Ztj
+

k∑
i=1

φti
∂Sti

∂Ztj

)
X(t+1)j

≈
n∑

j=1

(
∂Vt

∂Ztj
+

k∑
i=1

φti
∂Sti

∂Ztj

) (
µj + σj

k∑
l=1

ΓjlPl

)

=
n∑

j=1

(
∂Vt

∂Ztj
+

k∑
i=1

φti
∂Sti

∂Ztj

)
µj

+
k∑

l=1

( n∑
j=1

(
∂Vt

∂Ztj
+

k∑
i=1

φti
∂Sti

∂Ztj

)
σjΓjl

)
Pl (8)
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Applications of PCA: Portfolio Immunization
Can now use (8) to hedge the risk associated with the first k principal
components.

In particular, we solve for the φtl ’s so that the coefficients of the Pl ’s in (8) are
zero

- a system of k linear equations in k unknowns so it is easily solved.

If we include an additional hedging asset then could also ensure that total value
of hedged portfolio is equal to value of original un-hedged portfolio.
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Factor Models
Definition: We say the random vector X = (X1 . . .Xn)> follows a linear
k-factor model if it satisfies

X = a + B F + ε (9)

where

(i) F = (F1 . . .Fk)> is a random vector of common factors with k < n and
with a positive-definite covariance matrix;

(ii) ε = (ε1, . . . , εn) is a random vector of idiosyncratic error terms which are
uncorrelated and have mean zero;

(iii) B is an n × k constant matrix of factor loadings, and a is an n × 1 vector of
constants;

(iv) Cov(Fi , εj) = 0 for all i, j.
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Factor Models
If X ∼ MN(·, ·) and follows (9) then possible to find a version of the model
where F ∼ MN(·, ·) and ε ∼ MN(·, ·).

In this case the error terms, εi , are independent.

If Ω is the covariance matrix of F then covariance matrix, Σ, of X satisfies
(why?)

Σ = B Ω B> + Υ

where Υ is a diagonal matrix of the variances of ε.
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Exercise
Show that if (9) holds then there is also a representation

X = µ+ B∗ F∗ + ε (10)

where

E[X] = µ and
Cov(F∗) = Ik

so that Σ = B∗ (B∗)> + Υ.
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Example: Factor Models Based on Principal Components

Factor model of (6) may be interpreted as a k-factor model with

F = P(1) and
B = diag(σ1, . . . , σn) Γ1.

As constructed, covariance of ε in (6) is not diagonal
- so it does not satisfy part (ii) of definition above.

Nonetheless, quite common to construct factor models in this manner and to
then make the assumption that ε is a vector of uncorrelated error terms.
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Calibration Approaches
Three different types of factor models:

1. Observable Factor Models
Factors, Ft , have been identified in advance and are observable.
They typically have a fundamental economic interpretation e.g. a 1-factor
model where market index plays role of the single factor.
These models are usually calibrated and tested for goodness-of-fit using
multivariate or time-series regression techniques.

e.g. A model with factors constructed from change in rate of inflation,
equity index return, growth in GDP, interest rate spreads etc.

2. Cross-Sectional Factor Models
Factors are unobserved and therefore need to be estimated.
The factor loadings, Bt , are observed, however.

e.g. A model with dividend yield, oil and tech factors. We assume the factor
returns are unobserved but the loadings are known. Why?
e.g. BARRA’s factor models are generally cross-sectional factor models.

3. Statistical Factor Models
Both factors and loadings need to be estimated.
Two standard methods for doing this: factor analysis and PCA.
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Factor Models in Risk Management
Straightforward to use a factor model to manage risk.

For a given portfolio composition and fixed matrix, B, of factor loadings, the
sensitivity of the total portfolio value to each factor, Fi for i = 1, . . . , k, is easily
computed.

Can then adjust portfolio composition to achieve desired overall factor sensitivity.

Process easier to understand and justify when the factors are easy to interpret.

When this is not the case then the model is purely statistical.
Tends to occur when statistical methods such as factor analysis or PCA are
employed
But still possible even then for identified factors to have an economic
interpretation.
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E.G. Scenario Analysis for an Options Portfolio
Mr. Smith has a portfolio consisting of various stock positions as well as a
number of equity options.

He would like to perform a basic scenario analysis with just two factors:

1. An equity factor, Feq, representing the equity market.

2. A volatility factor, Fvol , representing some general implied volatility factor.

Can perform the scenario analysis by stressing combinations of the factors and
computing the P&L resulting from each scenario.

Of course using just two factors for such a portfolio will result in a scenario
analysis that is quite coarse but in many circumstances this may be sufficient.

Question: How do we compute the value of each security in each scenario?

Question: This is easy if we adopt a factor model framework
- see lecture notes for further details.
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