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Basic Concepts and Techniques of Risk
Management

We introduce the basic concepts and techniques of risk management in these lecture notes. We will closely
follow the content and notation of Chapter 2 of Quantitative Risk Management by McNeil, Frey and Embrechts.
This chapter should be consulted if further details are required.

1 Risk Factors and Loss Distributions

Let A be a fixed period of time such as 1 day or 1 week. This will be the horizon of interest when it comes to
measuring risk and calculating loss distributions. Let V; be the value of a portfolio at time tA so that the
portfolio loss between times tA and (t + 1)A is given by

Liv1 == Vi1 = V). (1)

Note that we treat a loss as a positive quantity so, for example, a negative value of L;;; denotes a profit. The
time! ¢ value of the portfolio depends of course on the time ¢ value of the securities in the portfolio. More
generally, however, we may wish to define a set of d risk factors, Zy := (Z; 1,...,Z; q) so that V; is a function
of t and Z¢. That is

Vi = f(tv Zt)

for some function f: R, x R? — R. In a stock portfolio, for example, we might take the stock prices or some
function of the stock prices as our risk factors. In an options portfolio, however, Zy might contain stock factors
together with implied volatility and interest rate factors. Now let X := Zy — Z¢_1 denote the change in the
values of the risk factors between times ¢ and ¢ — 1. Then we have

Liv1(Xet1) = = (f(E+1,Z¢ + Xeg1) — f(t,Ze)) (2)

and given the value of Z, the distribution of L;,; then depends only on the distribution of Xy .

1.1 Linear Approximations to the Loss Function

Assuming f(-,-) is differentiable, we can use a first order Taylor expansion to approximate L, with

d
Lo (Xeyr) = — (ft(t»zt)A + > [t Ze) Xt+1,z‘> (3)

i=1

where the f-subscripts denote partial derivatives. The first order approximation is commonly used when X, is
likely to be small. This is often the case when A is small, e.g. 1/365 = 1 day, and the market is not too volatile.
Second and higher order approximations also based on Taylor's Theorem can also be used. It is important to
note, however, that if X, is likely to be very large then Taylor approximations of any order are likely to work
poorly if at all.

1When we say time t we typically have in mind time tA.
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1.2 Conditional and Unconditional Loss Distributions

When we discuss the distribution of ZM it is important to clarify exactly what we mean. In particular, we need
to distinguish between the conditional and unconditional loss distributions. Consider the series Xy of risk factor
changes and assume that they form a stationary? time series with stationary distribution Fxx. We also let F;
denote all information available in the system at time ¢, including {Xs : s <t} in particular. We then have the
following two definitions.

Definition 1 The unconditional loss distribution is the distribution of L, 1 given the time t composition of
the portfolio and assuming the CDF of X1 is given by Fx.

Definition 2 The conditional loss distribution is the distribution of L;,1 given the time t composition of the
portfolio and conditional on the information in F;.

It is clear that if the X4's are /ID then the conditional and unconditional distributions coincide. For long time
horizons, e.g. A = 6 months, we might be more inclined to use the unconditional loss distribution. However, for
short horizons, e.g. 1 day or 10 days, then the conditional loss distribution is clearly the appropriate distribution.
This would be particularly true in times of high market volatility when the unconditional distribution would bear
little resemblance to the true conditional distribution.

Example 1 (A Stock Portfolio)
Consider a portfolio of d stocks with S;; denoting the time t price of the i*" stock and \; denoting the number
of units of this stock in the portfolio. If we take log stock prices as our factors then we obtain

Xt+1,i = 1115t+1,i - lnSt,i

and
d
X i
Liyr = — Y AiSpi (eXi —1).
i=1
The linear approximation satisfies
d d
Liyw = — Z)\iStJXtJrl,i = -V Zwt,iXt+1,i
i=1 i=1

where wy ; := \; St i /V; is the it" portfolio weight. If X415 has mean vector p and variance-covariance matrix
Y then we obtain E; I:Et+1:| = —Vuw'p and Vary (Et+1) = V2 w'Sw. Note that p and X could refer to the

first two moments of either the conditional or unconditional loss distribution. |

Example 2 (An Options Portfolio)
The Black-Scholes formula for the time ¢ price of a European call option with strike K and maturity 7" on a
non-dividend paying stock satisfies

C(Sp,t,0) = S®(dy) — e "T"OKD(dy)

log (5) + (r +0%/2)(T — t)
where d; = K dy = di —oVT —t
®(-) is the CDF of the standard normal distribution, S; is the time ¢ price of the underlying security and r is the
risk-free interest rate. While the Black-Scholes model assumes a constant volatility, o, in practice an implied
volatility, o(K, T, t), that depends on the strike, maturity and current time, ¢, is observed in the market.

Consider now a portfolio of European options all on the same underlying security. The portfolio may also
contain a position in the underlying security itself. If the portfolio contains d different options with a position of

2A time series, Xy, is strongly stationary if (X¢q,...,Xt,) is equal in distribution to (X¢q4k>- -3 Xgp4k) for all
n,k,t1,...,tn € Z1. Most risk factors are assumed to be stationary.
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\; in the i*" option, then

d
Liyr = —Xo(Sep1 = 8) — D A (C(Seqr,t + L,o(K;, Tp t + 1) — C(Sy, t,0(K;, T, 1)) (4)
i=1
where )\ is the position in the underlying security. Note that by put-call parity we can assume that all options
are call options. We can also use the linear approximation technique to approximate L;;1 in (4). This would
result in a delta-vega-theta approximation. For derivatives portfolios, the linear approximation technique based
on the first-order Greeks is often inadequate and second order approximations involving gamma and possibly
volga and vanna are often employed.

For risk factors, we can again take the log stock prices but it is not clear how to handle the implied volatilities.
There are several possibilities:

1. One possibility is to assume that the o (K, T,t)'s simply do not change. This is not very satisfactory but is
commonly assumed when historical simulation? is used to approximate the loss distribution and historical
data on the changes in implied volatilities are not available.

2. Let each o(K,T,t) be a separate factor. In addition to approximately doubling the number of factors, a
particular problem with this approach is that the implied volatilities are not free to move around
independently. In fact the assumption of no-arbitrage imposes strong restrictions on how the implied
volatility surface may move. It is therefore important to choose factors in such a way that those
restrictions are easily imposed when we estimate the loss distribution.

3. There are d implied volatilities to consider and in principal this leads to d factors, albeit with restrictions
on how these factors can move. We could use dimension reduction techniques such as principal
components analysis (PCA) to identify just two or three variables that explain most of the movements in
the volatility surface.

4. As an alternative to PCA, we could parameterize the volatility surface with just a few parameters and
assume that only those parameters can move from one period to the next. The parameterization should
be such that the no-arbitrage restrictions are easy to enforce. The obvious candidates would be factors
that represent the level, term structure and skew of the implied volatility surface.

Example 3 (A Bond Portfolio)
Consider a portfolio containing quantities of d different default-free zero-coupon* bonds where the i*"* bond has
price P; ;, maturity T; and face value equal® to 1. Let s; 7, denote the continuously compounded spot interest
rate for maturity 7; so that

Pii = exp(=si1,(Ti —t)).

If there are \; units of the i*” bond in the portfolio, then the total portfolio value is given by

d
Vi = > Aiexp(—sir,(Ti —t)).
1=1

Assume now that we only consider the possibility of parallel changes in the spot rate curve. Then if the spot
curve moves by J the portfolio loss satisfies

d
Lipi = — ZM (exp(=(st+a,r, +0)(Ti =t — A)) — exp(=s,1,(T; — 1))
d
A = N (Ti—t) = (siean +0)(Ti—t—A)). (5)

3See Section 3.

4There is no loss of generality here since we can decompose a default-free coupon bond into a series of zero-coupon bonds.

5There is also no loss of generality in assuming a face value of 1 since we can compensate by adjusting the quantity of each
bond in the portfolio.
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We therefore have a single risk factor, §, that we can use to study the distribution of the portfolio loss. Note
that if we assume that A is small so that s;ya 1, ~ st 7, then we can further approximate the right-hand-side of
(5) to obtain

d
Ly = 6 N(Ti—t). (6)
=1

We can use (how?) (5) or (6) to hedge parallel changes in the spot rate curve. Note that this is equivalent to
hedging using the Fisher-Weil duration of the portfolio. Had we used a second-order approximation to the
exponential function in deriving (5) then we would introduce the standard concept of convexity.

While hedging against parallel shifts in the spot rate curve often leads to good results, in practice the spot rate
curve tends to move in a non-parallel manner and more sophisticated® hedging techniques produce superior
results. 1

2 Risk Measurement

2.1 Approaches to Risk Measurement

We now outline several approaches to the problem of risk measurement.

Notional Amount Approach

This approach to risk management defines the risk of a portfolio as the sum of the notional amounts of the
individual positions in the portfolio. Each notional amount may be weighted by a factor representing the
perceived riskiness of the position. While it is simple, it has many weaknesses. It does not reflect the benefits of
diversification, does not allow for any netting and does not distinguish between long and short positions.
Moreover, it is not always clear what the notional amount of a derivative is and so the notional approach can be
difficult to apply when such derivatives are present in the portfolio.

Factor Sensitivity Measures

A factor sensitivity measure gives the change in the value of the portfolio for a given change in the factor.
Commonly used examples include the Greeks of an option portfolio or the duration and convexity of a bond
portfolio. These measures are often used to set position limits on trading desks and portfolios. They are
generally not used for capital adequacy decisions as it is often difficult to aggregate these measures across
different risk factors and markets.

For an example consider an option with time ¢ price C' that is written on an underlying security with price
process S;. We assume the time ¢ price, C, is a function of only S; and the implied volatility, o;. Then a simple
application of Taylor's Theorem vyields

9C 1, . ,0%C aC
C(S+AS,0+A0) ~ C(5,0)+AS5o + 5 (AS) Sy + Ao

1
= (C(S,0) + ASJs + i(AS)QF + Ao vega.

where we have omitted the dependence of the various quantities on . We therefore obtain

T
P&L =~ J§AS + §(AS)2 + vega Ao
= delta P&L + gamma P&L + vega P&L . (7)

6For example, methods based on principal components analysis (PCA) are often used in practice. We will study PCA when
we study dimension reduction techniques.
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When Ao = 0, we obtain obtain the well-known delta-gamma approximation which is often used, for
example, in historical Value-at-Risk (VaR) calculations. Note that we can also write (7)

AS\ TS2 /AS\?
=2y L2 (=2 A
6S(S>+ 5 (S>+vega o

= ESP x Return + $ Gamma x Return® + vega Ao (8)

P&L

Q

where ESP denotes the equivalent stock position or “dollar” delta. Note that it is easy to extend this
calculation to a portfolio of options on the same underlying security. It is also straightforward” to extend these
ideas to derivatives portfolios written with many different underlying securities.

Depending on the particular asset class, investors / traders / risk managers should always know their exposure
to the Greeks, i.e. dollar delta, dollar gamma and vega etc. It is also very important to note that approximations
such as (8) are local approximations as they are based (via Taylor's Theorem) on “small” moves in the risk
factors. These approximations can and indeed do break down in violent markets where changes in the risk
factors can be very large.

Scenario or Stress Approach

The scenario approach defines a number of scenarios where in each scenario the various risk factors are assumed
to have moved by some fixed amounts. For example, a scenario might assume that all stock prices have fallen by
10% and all implied volatilities have increased by 5 percentage points. Another scenario might assume the same
movements but with an additional steepening of the volatility surface. A scenario for a credit portfolio might
assume that all credit spreads have increased by some fixed absolute amount, e.g. 100 basis points, or some fixed
relative amount, e.g. 10%. The risk of a portfolio could then be defined as the maximum loss over all of the
scenarios that were considered. A particular advantage of this approach is that it does not depend on probability
distributions that are difficult to estimate. In that sense, the scenario approach to risk management is
very robust and should play a vital role in any financial risk management operation.

[Underlying [SPX Index 7]
Underlying and Volatility Stress Table

Sum of PnL Vol Stress | -

Underlying Stress | -10 5 -2 -1 0 1 2 5 10
-20 13,938 11,774 10,631 10277 9,936 9.608 9,293 8419 7,183
-10 6,109 4,946 4436 4291 4158 4,035 3,922 3634 3,296
-5 1,831 1652 1637 1643 1654 1670 1689 1,766 1,946
-2 (314) 89 356 447 B33 631 723 1,001 1,481
-1 (920) (338) 15 132 248 363 478 816 1,361
0 (1.463) (714) (280) (139) 0 137 273 668 1,293
1 (1,939) (1,035) (627) (363} (203} (45) 110 553 1,259
2 (2,346) (1,300) (723) (539)) (359) (182) (9) 489 1,253
5 (3.125) (1,744) (1,003) (769) (541) (318) (102) 518 1.460
10 (2,.921) (1,297) (423) (146} 123 385 641 1,372 2483
20 2344 3559 4272 4506 4738 4967 5194 5860 6,919

Figure 1: P&L for an Options Portfolio on SP5X under Stresses to Underlying and Implied Volatility

Figure 1 shows the P&L under various scenarios of an options portfolio with the S&P500 as the underlying
security. The vertical axis represents percentage shifts in the price of the underlying security whereas the
horizontal axis represents absolute changes in the implied volatility of each option in the portfolio. For example,
we see that if the S&P500 were to fall by 20% and implied volatilities were to all rise by 5 percentage points,
then the portfolio would gain 8.419 million dollars (assuming that the numbers in Figure 1 are expressed in units

7And we shall do this when we discuss dimension reduction methods in a later set of lecture notes.
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of 1,000 dollars). When constructing scenario tables as in 1 we can use approximations like (8) to check for
internal consistency and to help identify possible bugs in the software.

While scenario tables are a valuable source of information there are many potential pit-falls associated with
using them. These include:

1. Identifying the relevant risk factors

While it is usually pretty clear what the main risk factors for a particular asset class are, it is quite possible
that a portfolio has been constructed so that it is approximately neutral to changes in those risk factors.
Such a portfolio might then only have (possibly very large) exposures to secondary risk factors. It is
important then to include shifts in these secondary factors in any scenario analysis. The upshot is that the
the relevant risk factors depend on the specific portfolio under consideration rather than just the asset
class of the portfolio.

2. Identifying “reasonable” shifts for these risk factors

For example, we may feel that a shift of —10% is plausible for the S&P 500 because we know from
experience that such a move, while extreme, is indeed possible in a very volatile market. But how do we
determine plausible shifts for less transparent risk factors? The answer typically lies in the use of statistical
techniques such as PCA, extreme-value theory, time series methods, common sense(!) etc.

A key role of any risk manager then is to understand what scenarios are plausible and what scenarios are not.
For example, in a crisis we would expect any drop in the price of the underlying security to be accompanied by a
rise in implied volatilities. We would therefore pay considerably less attention to the numbers in the upper left
quadrant of Figure 1.

Measures Based on Loss Distribution

Many risk measures such as value-at-risk (VaR) or conditional value-at-risk (CVaR) are based on the loss
distribution of the portfolio. Working with loss distributions makes sense as the distribution contains all the
information you could possibly wish to know about possible losses. A loss distribution implicitly reflects the
benefits of netting and diversification. Moreover it is easy to compare the loss distribution of a derivatives
portfolio with that of a bond or credit portfolio, at least when the same time horizon is under consideration.
However, it must be noted that it may be very difficult to estimate the loss distribution. This may be the case
for a number of reasons including a lack of historical data, non-stationarity of risk-factors and poor model choice
among others.

2.2 Value-at-Risk

Value-at-Risk (VaR) is the most widely used risk measure in the financial industry. Despite the many weaknesses
of VaR, financial institutions are required to use it under the Basel Il capital-adequacy framework. In addition,
many institutions routinely report their VaR numbers to shareholders, investors or regulatory authorities. VaR is
a risk measure based on the loss distribution and our discussion will not depend on whether we are dealing with
the conditional or unconditional loss distribution. Nor will it depend on whether we are using the true loss
distribution or some approximation to it. We will assume that the horizon, A, has been fixed and that the
random variable L represents the loss on the portfolio under consideration over the time interval A. We will use
F(-) to denote the cumulative distribution function (CDF) of L. We first define the quantiles of a CDF.

Definition 3 Let F : R — [0, 1] be an arbitrary CDF. Then for « € (0,1) the a-quantile of F is defined by
go(F) := inf{z €R : F(z) > a}.

Note that if F' is continuous and strictly increasing, then ¢, (F) = F~!(a). For a random variable L with CDF
Fr(+), we will often write g, (L) instead of q,(FL). Using the fact that any CDF is by definition
right-continuous, we immediately obtain the following result.

Lemma 1 A point z¢ € R is the a-quantile of Fy, if and only if (i) Fr,(z9) > « and (ii) Fr(z) < « for all
xr < Zg.
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Definition 4 Let o € (0,1) be some fixed confidence level. Then the VaR of the portfolio loss at the
confidence level, «, is given by VaR,, := q.(L), the a-quantile of the loss distribution.

Example 4 (The Normal and t Distributions)
Because the normal and t CDFs are both continuous and strictly increasing, it is straightforward to calculate
their VaR,. If L ~ N(p,0?) then

VaR, = p+0® '(a) where ® is the standard normal CDF. (9)

By the previous lemma, this follows if we can show that Ff,(VaR,) = a. But this follows immediately from (9).

If L ~t(v,pu,0?) so that (L — u)/o has a standard ¢ distribution with v > 2 degrees-of-freedom, then
VaR, = p+ot;'(a) wheret, isthe CDF for the t distribution with v degrees-of-freedom.

Note that in this case we have E[L] = u and Var(L) = vo?/(v — 2). |

VaR has several weaknesses:

1. VaR attempts to describe the entire loss distribution with a single number and so significant information is
not captured in VaR. This criticism does of course apply to all scalar risk measures. One way around this
is to report VaR,, for several different values of .

2. There is significant model risk attached to VaR. If the loss distribution is heavy-tailed, for example, but a
normal distribution is assumed, then VaR, will be severely underestimated as « approaches 1. A
fundamental problem with VaR and other risk measures based on the loss distribution is that it can be
very difficult to estimate the loss distribution. Even when there is sufficient historical data available there
is no guarantee that the historical data-generating process will remain unchanged in the future. For
example, in the buildup to the sub-prime housing crisis it was clear that the creation and selling of vast
quantities of structured credit products could change the price dynamics of these and related securities.
And of course, that is precisely what happened.

3. VaR is not a sub-additive risk measure so that it doesn't lend itself to aggregation. For example, let
L = L1 + Lo be the total loss associated with two portfolios, each with respective losses, L1 and Lo. Then

4o (Fr) > qo(FL,) + qo(FrL,) is possible. (10)

In the risk literature this is viewed as being an undesirable property as we would expect some
diversification benefits when we combine two portfolios together. Such a benefit would be reflected by the
combined portfolio having a smaller risk measure than the sum of the two individual risk measures.

An advantage of VaR is that it is generally easier® to estimate. This is true when it comes to quantile
estimation in general as quantiles are not very sensitive to outliers. This is not true of other risk measures such
as CVaR which we discuss below. Despite this fact, it becomes progressively more difficult to estimate VaR,, as
« gets closer to 1. Extreme Value Theory (EVT) can be useful in these circumstances, however, and we will
return to EVT in later lectures.

The value of A that we use in practice generally depends on the application. For credit, operational and
insurance risk, A is often on the order of 1 year. For financial risks, however, typical values of A are on the
order of days, with 1 and 10 days being very common.

8This assumes of course that we have correctly specified the appropriate probability model so that the second weakness
above is not an issue. This assumption is often not justified!
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2.3 Expected Shortfall (ES) / Conditional Value-at-Risk (CVaR)

We now define expected shortfall which is also commonly referred to as conditional value-at-risk (CVaR).

Definition 5 For a portfolio loss, L, satisfying E[|L|] < oo the expected shortfall at confidence level o € (0,1)
is given by
1 1
ES, = / qu(Fr) du.

1 —«

The relationship between ES,, and VaR,, is therefore given by

1 1
ES., = VaR, (L) du

l—ao J,

from which it is clear that ES, (L) > VaR,(L). A more well known representation of ES,, (L) holds when Fp, is
continuous.

Lemma 2 If Fy, is a continuous CDF then

gs, — EIE f_zo?“@)] — E[L|L > VaR]. (11)

Proof: See Lemma 2.13 in McNeil, Frey and Embrechts. The proof is straightforward and relies on the
standard result that the random variable F;, *(U) has distribution Fy, when U ~ Uniform(0, 1).

Example 5 (Expected Shortfall for a Normal Distribution)
We can use (11) to compute the expected shortfall of an N(1, 0?) random variable. In particular we can check
that )

¢ (2 ())
l1-«a

where ¢(-) is the PDF of the standard normal distribution. |

ESe = o + 0 (12)

Example 6 (Expected Shortfall for a t Distribution)

Let L ~ t(v, j1,02) so that L := (L — 1) /o has a standard ¢ distribution with v > 2 degrees-of-freedom. Then
as in the previous example it is easy to see that ES, (L) = u+ 0ES,(L). It is straightforward using direct

integration to check that
A g (@) (vt ()’
ESa(L) = e (13)

where t,(-) and g¢,(-) are the CDF and PDF, respectively, of the standard t distribution with v
degrees-of-freedom. |

Exercise 1 Prove (13).

Remark 1 The t distribution has been found to be a much better model of stock (and other asset) returns
than the normal model. In empirical studies, values of v around 5 or 6 are often found to fit best.

The Shortfall-to-Quantile Ratio

One method of comparing VaR,, and ES,, is to consider their ratio as & — 1. It is not too difficult to see that in
the case of the normal distribution, ES, /VaR, — 1 as & — 1. However, ES,/VaR, — v/(v — 1) > 1 in the
case of the t distribution with v > 1 degrees-of-freedom. Figure 2 displays the shortfall-to-quantile ratio for the
normal distribution and ¢ distribution with 4 degrees of freedom.
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P VaR.normal VaR.t4 ES.normal ES.d  Ratio.normal Ratio.td
0800000 162.10 13713 22199 22355 1.37 163
0950000  208.06 190.658 2609 286.47 1.25 1.50
0975000 247 .92 24833 29571 35719 112 1.44
0990000 29426 33514 33713 466.94 1.15 1.39
0995000 32582 411.80 365.81 565.71 1.12 1.37
0999000 39089 B41.59 426.91 866.36 1.09 1.35
0999900 47042 11B65.77 500.71 1660.43 1.06 1.34
0999930  539.47 2036.89 5E6.52 2785.93 1.05 1.33
0999933 50127 3718.84 525.92 4960.36 1.04 1.33

Figure 2: Shortfall-to-Quantile Ratio for Normal and t Distributions

3 Standard Techniques for Risk Measurement

We now discuss some of the principal techniques for estimating the loss distribution.

3.1 Historical Simulation

Instead of using some probabilistic model to estimate the distribution of L;41(X¢4+1), we could estimate the
distribution using a historical simulation. In particular, if we know the values of X¢_;;1 fori =1,...,n, then
we can use this data to create a set of historical losses:

{ii = Lt+1(Xt—i+1) for 221,7’[1}

L; is the loss on the portfolio that would occur if the changes in the risk factors on date t — i 4 1 were to recur.
In order to calculate the value of a given risk measure we simply assume that the distribution of L;1(X¢y1) is

discrete and takes on each of the values L; with probability 1/nfori=1,...,n. Thatis, we use the empirical

distribution of the X's to determine the loss distribution.

If we wish to compute VaR, then we can do so using the appropriate quantiles of the L;'s. For example suppose
Lj ., is the jth reverse order statistic of the L;'s so that

Lnn<"'§i1,n-

s =

Then a possible estimator of VaR, (L:11) is E[,L(l_a)m where [n(1 — «)] is the largest integer not exceeding
n(l — «). The associated ES could be estimated by averaging E[n(l_a)]m, e ,fqm,.

The historical simulation approach is generally difficult to apply for derivative portfolios as it is often the case
that historical data on at least some of the associated risk factors is not available. If the risk factor data is
available, however, then the method is easy to apply as it does not require any statistical estimation of
multivariate distributions. It is also worth emphasizing that the method estimates the unconditional loss
distribution and not the conditional loss distribution. As a result, it is likely to be very inaccurate in times of
market stress. Unfortunately these are precisely the times when you are most concerned with obtaining accurate
risk measures.

3.2 Monte-Carlo Simulation

The Monte-Carlo approach is similar to the historical simulation approach except now we use some parametric
distribution for the change in risk factors to generate sample portfolio losses. The distribution (conditional or
unconditional) of the risk factors is estimated and, assuming we know how to simulate from this distribution, we
can generate a number of samples, m say, of portfolio losses. We are free to make m as large as possible,
subject to constraints on computational time. Variance reduction methods are often employed to obtain
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improved estimates of the required risk measures. While Monte-Carlo is an excellent tool, it is only as good as
the model used to generate the data: if the distribution of X1 that is used to generate the samples is poor,
then the Monte-Carlo samples will be of little value.

3.3 Variance-Covariance Approximations

In the variance-covariance approach we assume that X1 has a multivariate normal distribution so that
Xtr1 ~ MVN (i, X).

We also assume that the linear approximation in (3) is sufficiently accurate. Writing
Liv1(Xgg1) = — (e + thXtH) for a constant scalar, ¢;, and constant vector, by, we therefore obtain that

Liy1(Xe41) ~ N <_Ct — by p, thth) .

We can now use our knowledge of the normal distribution to calculate any risk measures of interest. Note that
this technique can be either conditional or unconditional, depending on how x and X are estimated.

The strength of this approach is that it provides a straightforward analytically tractable method of determining
the loss distribution. It has several weaknesses, however. Risk factor distributions are often® fat- or heavy-tailed
but the normal distribution is light-tailed. As a result, we are likely to underestimate the frequency of extreme
movements which in turn can lead to seriously underestimating the risk in the portfolio. This problem is
generally easy to overcome as there are other multivariate distributions that are also closed under linear
operations. In particular, if we assume that X1 has a multivariate ¢ distribution so that

Xep1 ~ t(v,p,X)

then we obtain R
Lijy1(Xgq1) ~ t (V, —ci — by, thzbt) .

where v is the degrees-of-freedom of the t-distribution. A more serious problem with this approach is the
assumption that the linear approximation will work well. This is generally not true for portfolios of derivative
securities or other portfolios where the portfolio value is a non-linear function of the risk-factors. It is also
problematic when the time horizon A is large. We can also overcome this problem to some extent by using
quadratic approximations to L1 instead of linear approximations and then using Monte-Carlo to estimate the
risk measures of interest.

3.4 Evaluating the Techniques for Risk Measurement

An important task of any risk manger is to constantly evaluate the risk measures that are being reported. For
example, if the daily 95% VaR is reported then we should see the daily losses exceeding the reported VaR
approximately 95% of the time. Indeed, suppose the reported VaR numbers are calculated correctly and let Y;
be the indicator function denoting whether or not the portfolio loss in period ¢ exceeds VaR;, the corresponding
VaR for that period. That is

Y, = { 1, Li > VaR;;
0, otherwise.

If we assume the Y;'s are /ID, then )" | Y; should be Bin(n,.05). We can use standard statistical tests to see if
this is indeed the case. Similar tests can be constructed for ES and other risk measures.

More generally, it is important to check that the true reported portfolio losses are what you would expect given
the composition of the portfolio and the realized change in the risk factors over the previous period. For
example, if you know the delta and vega of your portfolio at time ¢;_1 and you observe the change in the
underlying and volatility factors between ¢;_1 and ¢t;, then the actual realized gains or losses should be
consistent with the delta and vega numbers. If they are not, then further investigation is required. It may be

9We will define light- and heavy-tailed distributions formally when we discuss multivariate distributions.
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that (i) the moves required second order terms such as gamma, vanna or volga or (ii) other risk factors
influencing the portfolio value also changed or (iii) the risk factor moves were very large and cannot be captured
by any Taylor series approximation — see the related discussion below (8). Of course one final possibility is that
there's a bug in the risk management system!

4 Other Considerations

In this section we briefly describe some other issues that frequently arise in practice. We will return to some of
these issues at various points throughout the course.

4.1 Risk-Neutral and Data-Generating Measures

It is worth emphasizing that in risk management, we generally want to generate loss samples using the true
probability measure, P. This is in contrast to security pricing where we use a risk-neutral or equivalent
martingale measure, (. Sometimes, however, we need to use both probability measures. Imagine for example, a
portfolio of complex derivatives that we can only price using Monte-Carlo. In order to estimate the loss
distribution, we would then (i) generate samples of the change in risk factors using P and (ii) for each such
sample, compute the resulting value of the portfolio by running a Monte-Carlo using Q.

4.2 Data Risk

When using historical data to either estimate probability distributions or run a historical simulation analysis, for
example, it is important to realize that the data may be biased in several ways. For example, survivorship bias is
a common problem: the stocks that exist today are more likely to have done well than the stocks that no longer
exist. So when we run a historical simulation to evaluate the risk of a long stock portfolio, say, we are implicitly
omitting the worst returns from our analysis and therefore introducing a bias into our estimates of the various
risk measures. We can get around this problem if we can somehow include the returns of stocks that no longer
exist in our analysis. We also need to be mindful of biases that arise due to data mining or data snooping
whereby people trawl through data-sets looking for spurious data patterns to justify some investment strategy.
The newsletter scam is a classic example of what can go wrong! In some cases, selection bias may be present
inadvertently. Regardless, one should always be alert to the possibility of these biases.

4.3 Multi-Period Risk Measures and Scaling

It is often necessary to report risk measures with a particular investment horizon in mind. For example, many
hedge funds are required by investors to report their 10-day 95% VaR and the question arises as to how this
should be calculated. They could of course try to estimate the 10-day VaR directly. However, as hedge funds
typically calculate a 1-day 95% VaR anyway, it would be convenient if they could somehow scale the 1-day VaR
in order to estimate the 10-day VaR. Before considering this problem, it is worth emphasizing one of the implicit
assumptions that we make when calculating our risk measures:

The Constant Portfolio Composition Assumption: The risk measures are calculated by assuming that
the portfolio composition does not change over the horizon [tA, (t + 1)A].

Indeed regulatory requirements typically require that VaR be calculated under this assumption. While this is
usually ok for small values of A, e.g. 1 day, it makes little sense for larger values of A, e.g. 10 days, during
which the portfolio composition is very likely to change. In fact in some circumstance the portfolio composition
must change. Consider an options portfolio where some of the options are due to expire before the interval, A,
elapses. If the options are not cash settled, then any in-the-money options will be exercised resulting
automatically in new positions in the underlying securities. Regardless of how the options settle, the returns on
the portfolio around expiration will definitely not be //ID. It can therefore be very problematic scaling a 1-day
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VaR into a 10-day VaR in these circumstances. More generally, it may not even make sense to consider a 10-day
VaR when you know the portfolio composition is likely to change dramatically.

When portfolio returns are IID and factor changes are normally distributed then a square-root scaling rule can be
justified. In this case, for example, we could take the 10-day VaR equal to v/10 times the 1-day VaR. This
follows from Example 4 with 1 = 0 and the assumption of continuously compounded returns. But this kind of
scaling can lead to very misleading results when portfolio returns are not IID normal, even when the portfolio
composition does not change.

4.4 Model Risk

Model risk can arise when calculating risk measures or estimating loss distributions. For example, if we are
considering a portfolio of European options then there should be no problem in using the Black-Scholes formula
to price these options as long as we use appropriate volatility risk factors with appropriate distributions. But
suppose instead that the portfolio contains barrier options and that we use the corresponding Black-Scholes
model for pricing these options. Then we are likely to run into several difficulties as the model is notoriously
bad. It is possible, for example, that reported risk measures such as delta or vega will have the wrong sign!
Moreover, the range of possible barrier option prices is limited by the assumption of constant volatility. A more
sophisticated model would allow for a greater range of prices, and therefore losses. A more obvious example of
model risk is using a light-tailed distribution to model risk factors when in fact a heavy-tailed distribution should
be used.

4.5 Data Aggregation

A particularly important topic is the issue of data aggregation. In particular, how do we aggregate risk measures
from several trading desks or several units within a firm into one single aggregate measure of risk? This issue
arises when a firm is attempting to understand its overall risk profile and determining its capital adequacy
requirements as mandated by regulations. One solution to this problem is to use sub-additive risk measures that
can be added together to give a more conservative measure of aggregate risk. We will return to this topic when
we discuss coherent measures of risk.

Another solution is to simply ignore the risk measures from the individual units or desks. Instead we could try to
directly calculate a firm-wide risk number. This might be achieved by specifying scenarios that encompass the
full range of risk-factors to which the firm is exposed or using the variance-covariance approach with many risk
factors. The resulting mean vector, i, and variance-covariance matrix, 3, may be very high-dimensional,
however. For a small horizon, A, it is generally ok to set i = 0 but it will often be very difficult to estimate X
due to its high dimensionality. In that case factor models and other techniques can often be used to construct
more reliable estimates of 3.

4.6 Liquidity Risk

Liquidity risk is a very important source of risk particularly if we need to unwind a portfolio. We may know the
“fair’ market price of the portfolio in a given scenario but will we be able to transact or unwind at that price
should the scenario occur? If we expect bid-ask spreads to be tight in that scenario then it is indeed reasonable
to assume that we can unwind at approximately the “fair” price. But if the scenario is an extreme scenario then
it's possible the bid-ask spreads will have widened substantially so that transacting at the fair price will be
impossible. This situation can be exacerbated if many firms hold similar portfolios and are all “rushing for the
exits" at the same time. In that event enormous losses can be incurred in the act of unwinding the portfolio.
This is the “crowded trade” phenomenon and it was a source of many of the extreme losses that occurred
during the 2008 crisis.

Liquidity risk is difficult to model but does need to be accounted for if many firms also hold a similar position
and we expect that we may need to unwind our position should the scenario occur. One way to account for this
is to model the bid-ask spread in the various scenarios and use these to compute an “unwind” P&L in addition
to the market P&L (which does not assume unwinding is necessary and will take the fair price to be the
mid-point of the bid-ask spread.)
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4.7 P&L Attribution

Risk management is typically about understanding the risks in a portfolio in anticipation of future changes in the
underlying risk factors. In contrast, P&L attribution is a backward-looking process where the goal is to
understand what risk factor (changes) have contributed to the P&L that has been realized between times ¢ and
t + 1. There are at least a couple of approaches to solving this problem. Consider, for example, a European
option on a stock or index:

1. One approach is based on local approximations via Taylor's Theorem. Let Return;.y; and Ao ;1 denote
the changes in risk-factors (in this example the underlying return and change in implied volatility) between
times ¢ and ¢ + 1. We can then use (8) to obtain a predicted P&L, P&Lf;idl, as a function of the Greeks

at time ¢t and the changes in risk-factors:

P&Lf;idl ~ ESP; x Return;;+1 + $ Gamma, x ReturnitJrl + vega, Aoy 1. (14)

Note that P&Lf;fl is the P&L we would predict for the period [t,t + 1] standing at time ¢ if we knew
what the changes in risk factors were going to be over that period. Once time ¢ 4 1 arrives we can observe

the realized P&L, P&L:ft‘j_ll. We can then write this as
P&LYSY ) = P&LYYY + €1 e (15)

where €; ;11 is defined to be whatever value makes (15) true. Ideally €41 would be very small so that
the predicted P&L given by (14) accounts for almost all of the realized P&L. Note that we can then use
(14) to attribute the P&L to delta (ESP), gamma and vega respectively. If ; ;11 is large, however, then
the attribution has performed poorly. In that case we would need to include other risk factors, e.g. theta
for the (deterministic) passage of time or a dividend factor to account for changes in expected dividends,
or else include other second-order sensitivities such as volga, vanna etc. Even then, however, because
approximations like (14) are only valid for “small” changes in the risk factors, it is quite possible that this
approach will fail in extremely volatile markets such as those encountered at the height of the financial
crisis in 2008.

2. An alternative is to use a more global approach that is not based on the (mathematical) derivatives, i.e.
the Greeks, that are required by a Taylor series approximation. Such an approach is coarser than the local
approach but it will work in extremely volatile markets as long as all important risk factors are included in
the analysis.



