IEOR E4602: Quantitative Risk Management (Spring 2015) Columbia University Instructor: Martin Haugh Assignment 8: Due Monday 4th May 2015

Question 1

(a) Let $F(x) := 1 - (\kappa/(\kappa + x))^{\alpha}$ for $\alpha > 0$, $\kappa > 0$ and $x \ge 0$ denote the CDF of the Pareto distribution. By considering the normalizing sequences $c_n = \kappa n^{1/\alpha}/\alpha$ and $d_n = \kappa n^{1/\alpha} - \kappa$, show that $F \in \text{MDA}(H_{\xi})$. What is the value of ξ ?

(b) Confirm your result of part (a) by applying a theorem from the lecture notes regarding the Fréchet MDA. In particular, you should specify the function, $L(\cdot)$, that is slowly varying at infinity.

Question 2

Let $Z \sim H_{\xi,\mu,\sigma}$. Show that

$$W := \left(1 + \xi \; \frac{Z - \mu}{\sigma}\right)^{-1/\xi}, \quad \xi \neq 0$$

has an exponential distribution with mean 1. Explain how this might be used to check the GEV model's goodness of fit given data Z_1, \ldots, Z_n .

Question 3

Use the threshold exceedance method to estimate $\text{ES}_{.99}$ using the Danish fire data. Compute a 95% confidence interval for your estimate by assuming the maximum likelihood estimates of ξ and β have a bivariate normal distribution and then using Monte-Carlo simulation. Compare your confidence interval with the empirical estimate of $\text{ES}_{.99}$. (This is a very approximate way to construct confidence intervals. There are better ways based on reparametrization or possibly bootstrapping methods.)

Hint: You can load the data in R by installing the *evir* package and then typing data(danish) at the R prompt. Further useful commands include $out \leftarrow gpd(danish,x)$ where x is the threshold level that you need to specify, and *riskmeasures(out, c(0.99))*.