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Martin Haugh Due: 12.55pm Tuesday 18 April 2017

Assignment 7

1. (Conjugate Priors)

(a) Consider the following form of the Normal distribution

p(x | µ, κ) =
κ

1
2

√
2π
e−

κ(x−µ)2
2

where κ (the variance inverse) is called the precision parameter. Show that this
distribution can be written as an Exponential Family distribution of the form

p(x | θ1, θ2) = h(x)e−
θ1x

2

2
+θ2x−ψ(θ1,θ2)

Characterize h(x), (θ1, θ2) and the function ψ(θ1, θ2).

(b) Recall that the generic conjugate prior for an exponential family distribution is
given by

π(θ1, θ2) ∝ ea1θ1+a2θ2−γψ(θ1,θ2). (1)

Substitute your expression for (θ1, θ2) from part (a) to show that the conjugate
prior for the Normal model is of the form

π(κ | a0, b0) · π(µ | µ0, γκ) ∝ κa0−1e
− κ
b0︸ ︷︷ ︸

Gamma(κ|a0,b0)

·κ
1
2 e−

γκ
2
(µ−µ0)2︸ ︷︷ ︸

Normal(µ|µ0,γκ)

.

Your expressions for a0, b0 and µ0 should be in terms of γ, a1 and a2. (This prior
is known as the Normal-Gamma prior.)

(c) Suppose (µ, κ) ∼ Normal-Gamma(a0, b0, µ0, γ), and the likelihood of the data, x,

is p(x | µ, κ) = κ
1
2√
2π
e−

κ(x−µ)2
2 . Compute the posterior distribution after you see N

IID samples {x1, . . . , xN}.

2. (Order Restricted Inference)
Suppose one observes y1, . . . , yN where yi is binomially distributed with sample size
ni and probability of success pi, for i = 1, . . . , N . The pi’s are unknown but domain
specific knowledge tells us that

0 ≤ p1 < p2 < · · · < pN ≤ 1. (2)

We therefore assume a uniform prior for (p1, . . . , pN) over the space in RN defined by
(2). Describe in detail an algorithm for sampling from the posterior distribution of
(p1, . . . , pN) given y1, . . . , yN .
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3. (Gibbs and the Hierarchical Normal Model)
Consider the hierarchical Normal model of Example 7 in the MCMC and Bayesian
Modeling lecture notes. (This model is taken from Gelman et al’s Bayesian Data
Analysis.)

(a) Write your own Gibbs sampler code in the language of your choice to sample from
the posterior distribution.

Hint: To simulate X ∼ Inv-χ2 (ν, s2) first simulate Y from the χ2
ν distribution

and then set X = νs2/Y .

(b) Implement the Gelman-Rubin diagnostic by running 4 chains from over-dispersed
starting points, discarding the first 50% of samples etc.

(c) After running your code from (a) and (b) (and checking that the convergence
diagnostics are satisfied!) report posterior quantiles (at the 2.5%, 25%, 50%, 75%
and 97.5% levels) for θ1, θ2, θ3, θ4, µ, σ and τ . (Figure 1 displays results from
Gelman et al’s Bayesian Data Analsyis. You should obtain similar results.)

Figure 1: Results for Exercise 3 from Gelman et al.’s Bayesian Data Analysis.

4. (Exchangeable random variables)
We say X = (X1, . . . , XN) is a vector of exchangeable random variables if there exists
θ and a prior PDF π(θ) such that

P(X = x) =

∫ N∏
j=1

f(xj | θ)π(θ)dθ. (3)

It therefore follows from (3) that X1, . . . , XN are IID with density f(· | θ) given θ.
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(a) Show that

P(Xk = xk | X−k = x−k) =

∫
f(xk | θ)p(θ | X−k = x−k)dθ

where p(θ | X−k = x−k) denotes the posterior density of θ given X−k.

(b) Consider the following special case where under the prior distribution θ ∼ Beta(α, 0),
and f(x | θ) = Bernoulli(θ). Show that

P(Xk = 1 | X−k) =
α +m−k
α +N − 1

where m−k =
∑

j 6=k 1(Xj = 1).

(c) Continuing on from part (b), suppose the Xk’s are not observable. Instead for
each Xk we observe a variable Yk that is distributed according to the conditional
distribution g(Y | X). Let Y = (Y1, . . . , YN) denote the observed values of Y .
Show that

P(Xk = 1 | X−k,Y) ∝ g(Yk | Xk = 1) · α +m−k
α +N − 1

.

Remark: Note that the results of this question provide all the conditional distribu-
tions that you would need for a Gibbs sampler in this important class of models.

5. (Optional! Convergence Diagnostics)
In the lecture slides we defined

V̂ar
+

(ψ | X) :=
n− 1

n
W +

1

n
B (4)

where

B :=
n

m− 1

m∑
j=1

(
ψ̄.j − ψ̄..

)2
W :=

1

m

m∑
j=1

s2j where s2j :=
1

n− 1

n∑
i=1

(
ψij − ψ̄.j

)2
.

These definitions were based on having m chains each with n samples after discarding
the burn-in samples and ψ is some scalar function of the parameters / hidden variables

over which the posterior is defined. We claimed that V̂ar
+

(ψ | X) was an unbiased
estimator for Var+ (ψ | X) under stationarity. In this question, we will justify this
claim.
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(a) Suppose Y1, . . . , Yn is a sample from a stationary process with mean µ and auto-
covariance function γ(h). Show that

Var(Ȳ ) =
γ(0)

n
Rn (5)

where Rn := 1+2
∑n−1

h=1 ρ(h)
(
1− h

n

)
and ρ(h) := γ(h)/γ(0) is the autocorrelation

function. Note that γ(0) = Var(Y ). (If you don’t know what the autocovariance
function is try Google, Wikipedia or any time-series book.) Most stationary
processes generated by MCMC have ρ(h) ≥ 0 so that if we use (5) to estimate
Var(Y ) then we need to take this autocorrelation into account.

(b) Suppose now that Y follows an AR(1) process (a reasonable approximation to an
MCMC process) so that Yn = φYn−1 + ε. In that case it is straightforward to
check that ρ(h) = φh. Now justify the approximation

Rn ≈
1 + φ

1− φ
.

(c) Use the identity

n∑
i=1

(Yi − µ)2 =
n∑
i=1

(Yi − Ȳ )2 + n(Ȳ − µ)2

and (5) to show that E
[∑n

i=1(Yi − Ȳ )2
]

= γ(0)(n−Rn). Argue then that

V̂ar(Y ) :=

∑n
i=1(Yi − Ȳ )2 + γ̂(0)Rn

n

is an unbiased estimator of Var(Y ) when γ̂(0)Rn is an unbiased estimator of
γ(0)Rn.

(d) Explain how you could construct such an unbiased estimator of γ(0)Rn using m
realizations (each of length n) of the process. Now justify (4).
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