
Machine Learning for OR & FE
Classification and Regression Trees

with Bagging, Random Forests & Boosting

Martin Haugh
Department of Industrial Engineering and Operations Research

Columbia University
Email: martin.b.haugh@gmail.com

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with
applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie

and R. Tibshirani (JWHT). Additional References: Chapter 8 of JWHT

mailto:martin.b.haugh@gmail.com

Outline

Regression Trees
Pruning

Classification Trees

Bagging

Random Forests

Boosting

2 (Section 0)

Regression Trees
Regression problem: Learn the mapping ρ(x) : X ⊂ Rm 7→ R.

Can formulate problem as one of learning a partition X = ∪J
j=1Xj , i.e.

Xi ∩ Xj = ∅ for i 6= j, with

ρ(x) =
J∑

j=1
ρj1{x∈Xj}.

and each ρj ∈ R.

But searching over all possible partitions of X is intractable.
So we impose some structure and restrict Xk ’s to be axis-aligned rectangles.

e.g. Use regression tree to predict baseball players’ log salaries.

So a player with more than 4.5 years experience in major leagues and more than
117 hits in previous season has an estimated salary of

1, 000× e6.74 ≈ $845, 000

3 (Section 1)

e.g. Estimating Baseball Players’ Salaries
|

Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Figure 8.1 from ISLR: For the Hitters data, a regression tree for predicting the log salary of a
baseball player, based on the number of years that he has played in the major leagues and the
number of hits that he made in the previous year. At a given internal node, the label (of the
form Xj < tk) indicates the left-hand branch emanating from that split, and the right-hand
branch corresponds to Xj ≥ tk . For instance, the split at the top of the tree results in two large
branches. The left-hand branch corresponds to Years < 4.5, and the right-hand branch
corresponds to Years ≥ 4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations that fall there.

4 (Section 1)

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

Figure 8.2 from ISLR: The three-region partition for the Hitters data set from the regression
tree illustrated in Figure 8.1.

Regression Trees
But how to find a good partition of axis-aligned rectangles? This is hard!

So we use a top-down greedy approach known as recursive binary splitting.

But first need a loss function. For regression typically use RSS so goal is to find
rectangles R1, . . . ,RJ to minimize

J∑
j=1

∑
i∈Rj

(yi − ŷRj)2

where ŷRj = mean response for training observations in the jth rectangle.

Recursive binary splitting begins by selecting predictor xj and cutpoint s to
minimize ∑

i : xi∈R1(j,s)

(yi − ŷR1)2 +
∑

i : xi∈R2(j,s)

(yi − ŷR2)2

where
R1(j, s) := {x : xj < s} and R2(j, s) := {x : xj ≥ s}

6 (Section 1)

Regression Trees
Can find (j, s) quickly when number of predictors p not too large.

Next step is to choose a predictor and cutpoint to split one of the rectangles from
the previous step, i.e. R1 or R2, again with the goal of minimizing the RSS.

- have 3 rectangles at this point.

Continue in this manner until some stopping criterion is reached.

Note that we have J rectangles after J steps of the algorithm.

Once tree has been constructed can predict response of a new test observation
xnew by:

determining rectangle that contains xnew

and using mean response of training observations in that rectangle.

Next slide displays a tree with 5 rectangles.

7 (Section 1)

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

Figure 8.3 from ISLR: Top Left: A partition of two-dimensional feature space that could not
result from recursive binary splitting. Top Right: The output of recursive binary splitting on a
two-dimensional example. Bottom Left: A tree corresponding to the partition in the top right
panel. Bottom Right: A perspective plot of the prediction surface corresponding to that tree.

Pruning a Regression Tree
A common strategy is to:

1. Grow a large tree, T0, until a stopping criterion is satisfied
2. Then prune the tree using regularization

- done to control over-fitting.
Prune using cost complexity pruning – also known as weakest link pruning:

Consider a sequence of subtrees indexed by a tuning parameter α ≥ 0.
Each value of α corresponds to a subtree T ⊆ T0 that minimizes

|T|∑
m=1

∑
xi∈Rm

(yi − ŷRm)2 + α|T | (1)

where |T | = # of terminal nodes in T and Rm is the rectangle
corresponding to mth terminal node.

Fact: As we increase α from 0, branches get pruned from T0 in a nested fashion
- so easy to get sequence of subtrees beginning with T0 and ending with a

single node tree with a single rectangle = X .
9 (Section 1)

Complete Algorithm for Training a Regression Tree

Algorithm 8.1 from ISLR

10 (Section 1)

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

Figure 8.4 from ISLR: Regression tree analysis for the Hitters data. The unpruned tree that
results from top-down greedy splitting on the training data is shown.

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tree Size

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Training

Cross−Validation

Test

Figure 8.5 from ISLR: Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of terminal nodes in the
pruned tree. Standard error bands are displayed. The minimum cross-validation error occurs at
a tree size of three (which is displayed in Figure 8.1).

Classification Trees
A classification tree is very similar to a regression tree except instead of
predicting the mean response in a given rectangle we predict the most commonly
occurring class in that region.
But also interested (why?) in the class proportions

pjk = 1
|Rj |

∑
i:xi∈Rj

1{yi=k}

among the training points in each rectangle.
Several possibilities for defining “error”, e(Rj), at a (terminal) “node” Rj of tree:

Classification error: E(Rj) := 1−maxk p̂jk

Cross-entropy : D(Rj) := −
∑K

k=1 p̂jk log(p̂jk)

Gini index : G(Rj) := 1−
∑K

k=1 p̂2
jk

Seems natural to use classification error instead of RSS when implementing
recursive binary splitting for a classification tree

- but not a good idea since classification error not sufficiently sensitive.
13 (Section 2)

Classification Trees
Cross-entropy and Gini index are both measures of node purity since both will
have values near 0 if the p̂jk ’s are all near 0 or 1.

Therefore typically use cross-entropy or Gini index to evaluate quality of a
particular split with

e(T) :=
∑

j
|Rj |D(Rj)

or
e(T) :=

∑
j
|Rj |G(Rj)

replacing RSS that is used for regression trees.

When pruning the tree could use any of the 3 measures but common to use
classification error, E(Rj), if ultimate goal is prediction accuracy.

Question: Why do some splits yield terminal nodes with the same predicted
value in Figure 8.6 (on next slide)?

14 (Section 2)

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157

Chol < 244
MaxHR < 156

MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b

ChestPain:a

Oldpeak < 1.1

RestECG < 1

No Yes
No

No
Yes

No

No No No Yes

Yes No No

No Yes

Yes Yes

Yes

5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Tree Size

E
rr

o
r

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5

MaxHR < 161.5 ChestPain:bc

Ca < 0.5

No No

No Yes

Yes Yes

Figure 8.6 from ISLR: Heart data. Top: The unpruned tree. Bottom Left: Cross -validation error, training,
and test error, for different sizes of the pruned tree. Bottom Right: The pruned tree corresponding to the
minimal cross-validation error.

Regression Trees vs Linear Regression

−2 −1 0 1 2

−
2

−
1

0
1

2
X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2
X1

X
2

Figure 8.7 from ISLR: Top Row: A two-dimensional classification example in which the true decision
boundary is linear, and is indicated by the shaded regions. A classical approach that assumes a linear
boundary (left) will outperform a decision tree that performs splits parallel to the axes (right). Bottom Row:
Here the true decision boundary is non-linear. Here a linear model is unable to capture the true decision
boundary (left), whereas a decision tree is successful (right).

16 (Section 2)

Pros & Cons of Decision Trees
Pros:

Interpretable and easy to explain
Robust to outliers, scaling, and irrelevant variables
Can easily handle categorical variables (without needing dummy variables)
and missing data
Only one tuning parameter

Cons:
The true map, ρtrue(x), may not be piecewise constant on axis-aligned
rectangles
High variance! Fitted models depends a lot on data split into training and
test sets. Greedy algorithm makes the issue worse!
Often not competitive with other regression and classification approaches

How does one get around the variance?

17 (Section 2)

Improving Decision Trees
Decision trees often combined with other methods to produce superior classifiers
including:

Building and aggregating results of multiple trees using Bootstrap
Aggregation i.e., bagging
Building random forests
Boosting with tree stumps.

18 (Section 2)

Bagging
Bootstrap Aggreation (Bagging)

Generate bootstrap samples of the data: D1, . . . ,DB
Train classification or regression trees ρ1, . . . , ρB

- trees are grown deep and are not pruned.
Classify using majority rule or (for regression trees) predict using average of
the B predictions!

Can estimate test error of bagged model using out-of-bag (OOB) observations:
For each of the i = 1, . . . ,n of observations, predict response of ith

observation using only those trees for which the ith data-point was OOB.
This yields ≈ B/3 (why?) predictions for ith observation.
Average these predictions for regression or use majority voting of predictions
for classification and compare with true response to obtain error on ith

observation.
Average across all n observations to obtain valid estimate of test error.

Improves performance ... but not by much. What could have gone wrong?

19 (Section 3)

0 50 100 150 200 250 300

0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Number of Trees

E
rr

o
r

Test: Bagging

Test: RandomForest

OOB: Bagging

OOB: RandomForest

Figure 8.8 from ISLR: Bagging and random forest results for the Heart data. The test error
(black and orange) is shown as a function of B, the number of bootstrapped training sets used.
Random forests were applied with m = √p. The dashed line indicates the test error resulting
from a single classification tree. The green and blue traces show the OOB error, which in this
case is considerably lower.

Variable Importance Measures

Thal

Ca

ChestPain

Oldpeak

MaxHR

RestBP

Age

Chol

Slope

Sex

ExAng

RestECG

Fbs

0 20 40 60 80 100

Variable Importance

Figure 8.9 from ISLR: A variable importance plot for the Heart data. Variable importance is computed using
the mean decrease in Gini index, and expressed relative to the maximum.

Bagged models clearly hard to interpret but can still obtain measure of overall
importance of each predictor:

For regression, compute total amount that RSS is decreased due to splits on
each predictor, averaged over the B trees.
For classification trees, use decrease in Gini index.

21 (Section 3)

Random Forests
Random forests improve bagged trees by de-correlating the trees.

Random forests are constructed according to:
Generate bootstrap samples of the data: D1, . . . ,DB.
Build a tree on each bootstrapped data-set but:

At each node only a random sample of m ≤ p predictors are candidates for
splitting
A fresh random sample is taken at each split
Typically take m ≈ √p for classification and m ≈ p/3 for regression.

Classify using majority rule or take average for regression!

Question: What does the extra randomness do?

Note bagging is a special case of random forests corresponding to taking m = p.

Random forests are very popular and can often lead to dramatic improvement
over trees and bagging

- see improvement on gene expression example on next slide!
22 (Section 4)

0 100 200 300 400 500

0
.2

0
.3

0
.4

0
.5

Number of Trees

T
e
s
t
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

m=p

m=p/2

m= p

Figure 8.10 from ISLR: Results from random forests for the 15-class gene expression data set
with p = 500 predictors. The test error is displayed as a function of the number of trees. Each
colored line corresponds to a different value of m, the number of predictors available for
splitting at each interior tree node. Random forests (m < p) lead to a slight improvement over
bagging (m = p). A single classification tree has an error rate of 45.7%.

Boosting
Boosting a general approach for improving performance of weak classifiers /
regression models.

Boosting decision trees also involved building many decision trees but now each
tree is grown sequentially based on performance of previous tree.

Boosting does not involve bootstrap sampling.

24 (Section 5)

Algorithm for Boosting Regression Trees

Algorithm 8.2 from ISLR

25 (Section 5)

Algorithm for Boosting Regression Trees
Note construction of each tree depends on the trees that have already been
grown.

Boosting has 3 tuning parameters:
1. B = # of trees. Use cross-validation to select.
2. The shrinkage parameter, λ, controls the learning rate.

Typical values are λ = 0.01 or 0.001 with optimal value depending on
problem.
Very small λ often results in much larger value of optimal B.

3. d = # of splits / terminal nodes.
d = 1 often works well in which case the trees are called stumps.

Boosting can often perform very well – see example using gene expression data to
predict cancer on next slide.

26 (Section 5)

0 1000 2000 3000 4000 5000

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

Number of Trees

T
e
s
t
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

Boosting: depth=1

Boosting: depth=2

RandomForest: m= p

Figure 8.11 from ISLR: Results from performing boosting and random forests on the 15-class
gene expression data set in order to predict cancer versus normal. The test error is displayed as
a function of the number of trees. For the two boosted models, λ = 0.01. Depth-1 trees slightly
outperform depth-2 trees, and both outperform the random forest, although the standard errors
are around 0.02, making none of these differences significant. The test error rate for a single
tree is 24%.

Algorithm for Classification Boosting
Initialize the probability w(1)

i of each data point (yi , xi) = 1
N and repeat the

following for t = 1, . . . ,T :
Fit a classifier ρ(t) using probability weights w(t)

Compute error et and update αt :

et =
N∑

i=1
w(t)

i 1{yi 6=ρ(t)(xi)}

αt = log
(

1− et

et

)
+ log(K − 1)

Define new probability

w(t+1)
i ∝ w(t)

i eαt1{yi 6=ρ(t)(xi)}

i.e. increase weight on examples where classifier makes an error.

Final classifier:

ρ(x) = argmax
1≤k≤K

{ T∑
t=1

αt1{ρt(x)=k}}

28 (Section 5)

	Regression Trees
	Pruning

	Classification Trees
	Bagging
	Random Forests
	Boosting

