
Machine Learning for OR & FE
Kernel Methods (and the Kernel Trick)

Martin Haugh
Department of Industrial Engineering and Operations Research

Columbia University
Email: martin.b.haugh@gmail.com

Additional References: Christopher Bishop’s PRML, Theodoridis’ Machine Learning: A Bayesian and
Optimization Perspective, Hastie and Efron’s Computer Age Statistical Inference

mailto:martin.b.haugh@gmail.com

Outline
Motivation: SVMs

The Separable Case
The Non-Separable Case
The Dual Problem

The Kernel Trick
Back to SVMs

Reproducing Kernel Hilbert Spaces
Introduction
Some Functional Analysis
Reproducing Kernel Hilbert Spaces

The Representer Theorem
Back to SVMs
The Semiparametric Representer Theorem
Kernel Ridge Regression

Constructing New Kernels
Appendix: Mercer’s Theorem

2 (Section 0)

The Separable Case
Two classes which (for now) are assumed to be linearly separable.

Training data x1, . . . , xn with corresponding targets, t1, . . . , tn with ti ∈ {−1, 1}.

We consider a classification rule of the form of the form

h(x) = sign
(
w>x + b

)
= sign (y(x))

where y(x) := w>x + b.

Can re-scale (w, b) without changing the decision boundary.

Therefore choose (w, b) so that training points closest to boundary satisfy
y(x) = ±1

- see left-hand component of Figure 7.1 from Bishop.

Let x1 be closest point from class with t1 = −1 so that w>x1 + b = −1.
And let x2 be closest point from class with t2 = 1 so that w>x2 + b = 1.

3 (Section 1)

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 from Bishop: The margin is defined as the perpendicular distance
between the decision boundary and the closest of the data points, as shown on
the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by
a subset of the data points, known as support vectors, which are indicated by the
circles.

Geometry of Maximizing the Margin
Recall the perpendicular distance of a point x from the hyperplane, w>x + b = 0,
is given by

|w>x + b|/||w||.

Therefore distance of closest points in each class to the classifier is 1/||w||.

An SVM seeks the maximum margin classifier that separates all the data
- seems like a good idea
- and can be justified by statistical learning theory.

Maximizing the margin, 1/||w||, is equivalent to minimizing f(w) := 1
2w>w.

Therefore obtain the following primal problem for the separable case:

min
w,b

f(w) = 1
2w>w (1)

subject to ti
(
w>xi + b

)
≥ 1, i = 1, . . . , n (2)

Note that (2) ensures that all the training points are correctly classified.

5 (Section 1)

The Primal Problem
The primal problem is a quadratic program with linear inequality constraints

- moreover it is convex and therefore has a unique minimum.

From the problem’s geometry should be clear that only the points closest to the
boundary are required to define the optimal hyperplane

- see right-hand component of Figure 7.1 from Bishop.
- these are called the support vectors
- and will see that the solution can be expressed using only these points.

6 (Section 1)

The Non-Separable Case
In general the data will be non-separable so the primal problem of (1) and (2)
will be infeasible.

Several ways to proceed: e.g. minimize the number of misclassified points, but
this is NP-hard.

Instead we allow points to violate the margin constraints and penalize accordingly
in the objective function. This yields the more general non-separable primal
problem:

min
w,ξ,b

1
2w>w + C

n∑
i=1

ξi (3)

subject to ti
(
w>xi + b

)
≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n (4)

- again a convex quadratic programming problem with linear constraints
- the penalty C usually chosen by cross-validation.

7 (Section 1)

Aside: the Hinge Loss Function
The primal objective function of the SVM classifier may be written (why?) as

Obj. Fun. = 1
2w>w + C

n∑
i=1

ξi

≡ 1
2C ||w||

2 +
n∑
i=1

Esv(tiyi)

where
Esv(tiyi) := [1− tiyi]+ (5)

and where yi := y(xi).

The error function Esv(·) is known as the hinge loss function.

8 (Section 1)

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

Figure 7.3 from Bishop: Illustration of the slack variables in ξn ≥ 0. Data
points with circles around them are support vectors.

Note that the slack variables allow points to be misclassified.

The Dual (of the Non-Separable Problem)
It’s more convenient to work with the dual problem.

Because the primal problem is convex, the dual and primal have equal optimal
objective functions.

Can be shown that the dual problem reduces to

max
α≥0,λ≥0

∑n
i=1 αi −

1
2
∑n
i,j=1 αiαjtitj x

>
i xj︸ ︷︷ ︸

an inner product!

(6)

subject to
∑n
i=1 αiti = 0

C − αi − λi = 0, i = 1, . . . , n (7)

where λ = (λ1, . . . , λn) are Lagrange multipliers for the constraints (4)
- again a convex quadratic program with linear constraints
- the original dual plus the additional linear constraints of (7).

Can remove λ from the dual by replacing (7) with αi ≤ C for i = 1, . . . , n.

10 (Section 1)

The Kernel Trick
The kernel-trick very commonly used in regression, classification, PCA etc.

Allows problem to be easily embedded in much higher dimensional spaces
and often infinite dimensional spaces
But without having to do an infinite amount of work.

Suppose instead of using x ∈ Rm to describe the inputs we instead use a feature
map, φ(x)> ∈ RM , often with M >> m.

Can now solve same dual problem as (6) except x>i xj replaced with
φ(xi)>φ(xj).
Optimal b∗ satisfies

b∗ = tj −
n∑
i=1

α∗i tiφ(xi)>φ(xj) for any C > α∗j > 0 (8)

and, for a new data-point x, we predict

sign
(
w∗>φ(x) + b∗

)
= sign

(
n∑
i=1

α∗i tiφ(xi)>φ(x) + b∗

)
. (9)

11 (Section 2)

The Gram Matrix
Define the Gram matrix, K = φφ> to be the n× n matrix with

Kij := φ(xi)>φ(xj) =: k(xi, xj) (10)

For any set of points, x1, . . . , xn, the kernel matrix K is positive semi-definite so
that z>Kz ≥ 0 for all z ∈ Rn.

Definition. We say a function, k(x, x′), is a kernel if it corresponds to a scalar
product, φ(x)>φ(x′) in some feature space, RM , possibly with M =∞.

Theorem. A necessary and sufficient condition for a function, k(x, x′), to be a
kernel is that the corresponding Gram matrix, K, be positive semi-definite for all
possible choices of x1, . . . , xn.

12 (Section 2)

Kernels
Key implication of theorem is possibility of implicitly defining a (possibly
infinite-dimensional) feature map, φ(·), using a kernel function k(·, ·).

Note that φ(·) is not explicitly required to state the dual problem, nor is it
required in (8) and (9)

- only k(·, ·) is required!
- a big advantage since far less work may be required to compute k(·, ·).

e.g. Let m = 2 and define k(x, x′) := (x>x′)2. Easy to check that
k(x, x′) = φ(x)>φ(x′) where

φ(x) :=
(
x2

1,
√

2x1x2, x
2
2

)
.

But calculating k(x, x′) requires O(m) (= dim(x)) work whereas calculating
φ(x)>φ(x′) requires O(M) = O(m2) work.

More generally, we could define k(x, x′) := (x>x′ + c)p

- computing it will still be O(m) but working with corresponding feature
mapping will be O(mp).

13 (Section 2)

Kernelizing the Dual
Can easily apply the kernel trick to obtain the following dual problem:

max
α≥0

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjtitjk(xi, xj) (11)

subject to
n∑
i=1

αiti = 0 (12)

αi ≤ C, i = 1, . . . , n (13)

Given an optimal solution, α∗, can recover the SVM classifier as:

b∗ = tj −
n∑
i=1

α∗i tik(xi, xj) for any C > α∗j > 0

and, for a new data-point x, the prediction

sign
(
w∗>φ(x) + b∗

)
= sign

(
n∑
i=1

α∗i tik(xi, x) + b∗

)
. (14)

14 (Section 2)

Figure 7.2 from Bishop: Example of synthetic data from two classes in two dimensions
showing contours of constant y(x) obtained from a support vector machine having a
Gaussian kernel function. Also shown are the decision boundary, the margin boundaries,
and the support vectors.

It so happens here that the data is linearly separable in the Gaussian-kernel
space but not in the original space. (In general the data will not be
separable in either space.)

A Demo of SVM Classification with Polynomial Kernel by Udi Aharoni

16 (Section 2)

http://www.youtube.com/embed/3liCbRZPrZA

Introduction to RKHS’s∗

Have seen kernel trick applied to SVMs but needed to work with dual problem.

Question: Can we apply the kernel trick to the primal problem, i.e. without
having to formulate and work with the dual?

Question: And can we do this more generally, i.e. not just for SVMs?

Answer to both questions is “yes” but to see this must first introduce reproducing
kernel Hilbert spaces (RKHS).

∗This section on RKHS’s draws from lecture notes by Lorenzo Rosasco.

17 (Section 3)

The Regularization Problem
Goal of regularization is to:

1. Help control over-fitting the training data and thus ensure a better
generalization error.

2. (Sometimes) ensure the learning optimization problem is well-posed.

If we use H to denote our hypothesis or function space then a general approach
to regularization solves

min
f∈H

Err(f)︸ ︷︷ ︸
empirical error

+ λ Pen(f)︸ ︷︷ ︸
penalty error

(15)

λ controls the tradeoff between the two terms and could be chosen via
cross-validation.

18 (Section 3)

The Regularization Problem
A more specific version of (15) is

min
f∈H

n∑
i=1

L(f(xi), yi)︸ ︷︷ ︸
empirical error

+ λΩ
(
||f ||2H

)︸ ︷︷ ︸
penalty error

(16)

where:
n = # of training data points.
||f ||H denotes the norm of f in the function space H.
L(f(x), y) is the loss function for predicting f(x) when the true value is y.
Ω : [0,+∞)→ R is an arbitrary strictly monotonic increasing function.

Note that a large number of standard supervised learning problems can be
formulated as in (16).

Penalty term is used to control over-fitting and intuition tells us that it must
therefore impose some form of smoothing on f .

Before proceeding, need to define some of the aforementioned terms ...
19 (Section 3)

Some Functional Analysis
Let F be a function space whose elements are functions defined on X.

Definition. An inner product is a function 〈·, ·〉 : F × F → R that satisfies for
every f, g ∈ F and α1, α2 ∈ R:

1. 〈f, g〉 = 〈g, f〉. (symmetry)
2. 〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉. (linearity)
3. 〈f, f〉 ≥ 0 for all f ∈ F and 〈f, f〉 = 0 if and only if f = 0.

Definition. A norm is a non-negative function || · || : F → R such that for all
f, g ∈ F and α ∈ R we have:

1. ||f || ≥ 0 and ||f || = 0 if and only if f = 0.
2. ||f + g|| ≤ ||f ||+ ||g||.
3. ||αf || = |α| ||f ||.

Given an inner product, 〈·, ·〉, we can define a norm according to

||f || :=
√
〈f, f〉 (17)

20 (Section 3)

Hilbert Spaces
Definition. A complete metric space is a metric space where every Cauchy
sequence converges.

Definition. A Hilbert space is a vector space equipped with an inner product
〈·, ·〉. Moreover it is complete w.r.t. the norm defined by the inner product.

We will also only work with separable Hilbert spaces. By definition such a space
has a countably dense subset so that is also has a countable orthonormal basis.

(Separable) Hilbert spaces are therefore (typically infinite-dimensional)
generalizations of the usual Euclidean space Rd

- very useful as we can apply mathematical tools of Euclidean space to them.

21 (Section 3)

Examples of Function Spaces
e.g. Let F be the space, C[a, b], of continuous function on the interval [a, b]
with the max norm

||f || := max
a≤x≤b

|f(x)|

No inner product that induces this norm so C[a, b] is not a Hilbert space.

e.g. Consider space, L2[a, b], of square-integrable functions on the interval [a, b]
with inner product defined by

〈f, g〉 :=
∫ b

a

f(x)g(x) dx

with induced norm
||f || =

∫ b

a

f(x)2 dx.

Can check that this is a complete space and therefore L2[a, b] is a Hilbert space.

22 (Section 3)

The Problem with L2[a, b] as a Hypothesis Space
Let f ∈ L2[a, b] and consider a finite number of values x1, . . . , xn ∈ [a, b]. Now
define g as follows:

g(x) :=
{
c, x = xi for any i = 1, . . . , n
f(x), otherwise.

Then g ∈ L2[a, b] and ||f − g|| = 0.

But this means taking H = L2[a, b] in (16) will not work. Why?

And so any solution to (16) with H = L2[a, b] (or H = Ld2[a, b] more generally)
will have no predictive value.

Must therefore refine our hypothesis space H so that we overcome this problem
- leads to reproducing kernel Hilbert spaces (RKHS’s) – Hilbert spaces with

the reproducing kernel property.

23 (Section 3)

Reproducing Kernel Hilbert Spaces
Definition. An evaluation functional at the point x ∈ X over the Hilbert space
H is a linear functional Fx : H → R that evaluates each function in H at the
point x so that

Fx[f] = f(x)

for all f ∈ H.

Definition. A Hilbert space H is a reproducing kernel Hilbert space if the
evaluation functionals are bounded, that is for all x ∈ X there exists some
M > 0 such that

|Fx[f]| = |f(x)| ≤M ||f ||H
for all f ∈ H.

Question: Explain why the evaluation functionals in the Hilbert space L2[a, b]
are not bounded and so L2[a, b] is not a RKHS.

Can use the Riesz Representation Theorem to establish the following result.

24 (Section 3)

Reproducing Kernel Hilbert Spaces
Theorem. If H is a RKHS then for each x ∈ X there exists a function kx ∈ H
(called the representer of x) with the reproducing property

Fx[f] = 〈kx, f〉H = f(x) (18)

for all f ∈ H.

Since kx′ ∈ H for any x′ ∈ X we can take f = kx′ in (18) to obtain

〈kx, kx′〉H = kx(x′)
= kx′(x). (Why?)

We now define the reproducing kernel of H:

Definition. The reproducing kernel of the RKHS H is a function
k : X ×X → R defined by

k(x, x′) := kx(x′). (19)

25 (Section 3)

Reproducing Kernel Hilbert Spaces
We also have a more general definition of a reproducing kernel:

Definition. A function k : X ×X → R is a reproducing kernel if it is
symmetric, i.e. k(x, x′) = k(x′, x) for all x, x′ ∈ X, and positive-definite so that

m∑
i,j=1

cicjk(x′i, x′j) ≥ 0

for any m ∈ N and choice of x′1, . . . , x′m ∈ X and c1, . . . , cm ∈ R.

The two definitions are equivalent as established by the following theorem.

Theorem. A RKHS defines a corresponding reproducing kernel, i.e. a symmetric
and positive-definite function k(·, ·). Conversely a reproducing kernel defines a
unique RKHS.

The importance of this theorem is that it allows us to (implicitly) define a RKHS
via a symmetric positive definite function k without having to derive k from the
definition of the function space directly.

26 (Section 3)

Proof of Theorem
A RKHS ⇒ a Reproducing Kernel:

Define the function k(·, ·) as in (19). It is clearly symmetric and
positive-definiteness follows because

m∑
i,j=1

cicjk(x′i, x′j) =
m∑

i,j=1
cicj 〈kx′

i
, kx′

j
〉H

=
m∑

i,j=1
〈cikx′

i
, cjkx′

j
〉H

= 〈
m∑
i=1

cikx′
i
,

m∑
j=1

cjkx′
j
〉H

= ||
m∑
i=1

cikx′
i
||2H

≥ 0

as desired.

27 (Section 3)

Proof of Theorem
A Reproducing Kernel ⇒ a RKHS :
Consider the space F of functions spanned by {kx |x ∈ X} where k(·, ·) is the
reproducing kernel (so k(·, ·) is symmetric and positive definite).
Let f, g ∈ F so there exists s, r ∈ N, points x′i, z′j ∈ X and αi, βj ∈ R s.t.

f(x) =
s∑
i=1

αikx′
i
(x)

g(x) =
r∑
j=1

βjkz′
j
(x).

Define an inner product in this space according to

〈f, g〉 :=
s∑
i=1

r∑
j=1

αiβjk(x′i, z′j). (20)

Must show inner product in (20) is indeed an inner product and then define
H := F̄ , the completion of the function space F . 2

28 (Section 3)

Solving the Regularization Problem & Representer Theorem

Return now to original regularization problem:

min
f∈H

n∑
i=1

L(f(xi), yi)︸ ︷︷ ︸
empirical error

+ λΩ
(
||f ||2H

)︸ ︷︷ ︸
penalty error

(21)

where ||f ||H denotes the inner-product norm of f in the RKHS H.

Note that typically we are given the reproducing kernel function k(·, ·) and don’t
bother to explicitly define H (which is the completion of the space spanned by
{kx |x ∈ X} with inner product given by (20)).

Remark: Note that the x′i’s and z′j ’s appearing in (20) are f - and g-dependent,
respectively. They are not related to the data-points x1, . . . , xn of (21).

The problem in (21) is infinite-dimensional (in general) and so there may be
computational issues in solving it.

But fortunately we have the representer theorem ...
29 (Section 4)

The Representer Theorem
Theorem. Every solution f∗(·) to (21) admits a representation of the form

f∗ =
n∑
j=1

cjkxj (22)

where cj ∈ R for j = 1, . . . , n.

The representer theorem is a remarkable result as it allows to reformulate the
infinite dimensional problem of (21) to the finite dimensional problem of
optimizing over c1, . . . , cn.

30 (Section 4)

(Sketch) Proof of the Representer Theorem
Consider the linear subspace of H

H0 :=

f ∈ H : f =
n∑
j=1

cjkxj


– the space spanned by the representers of the training data.

Let H⊥0 be the linear subspace of H that is orthogonal to H0 so that

H⊥0 := {g ∈ H : 〈g, f〉 = 0 for all f ∈ H0} .

Since H0 is finite-dimensional and hence closed we can write H = H0 ⊕H⊥0 .

Any f ∈ H an therefore be uniquely decomposed as

f = f0 + f⊥0

where f0 ∈ H0 and f⊥0 ∈ H⊥0 . Let f0 =
∑n
j=1 cjkxj

for some c1, . . . , cn.

We now make two observations:
31 (Section 4)

(Sketch) Proof of the Representer Theorem

1. By orthogonality we have

||f0 + f⊥0 ||2H = ||f0||2H + ||f⊥0 ||2H

2. By the reproducing property and orthogonality we have

f(xi) = 〈f, kxi〉
= 〈f0 + f⊥0 , kxi〉
= 〈f0, kxi〉
= f0(xi).

Can now rewrite the objective in (21) as

n∑
i=1

L(f0(xi), yi) + λΩ
(
||f0||2H + ||f⊥0 ||2H

)
(23)

and the result follows since Ω is strictly increasing by assumption. 2

32 (Section 4)

The Representer Theorem
An optimal solution to (21) therefore takes the form given in (22) with
corresponding objective function
n∑
i=1

L (f(xi), yi) + λΩ
(
||f ||2H

)
=

n∑
i=1

L

 n∑
j=1

cj k(xi, xj), yi

+ λΩ

 n∑
i,j=1

cicj k(xi, xj)


=

n∑
i=1

L
(
c>Ki·, yi

)
+ λΩ

(
c>Kc

)
(24)

where c := (c1 . . . cn)>, K is the n× n Gram matrix with (i, j)th element
k(xi, xj) and Ki· is the ith row of K.

33 (Section 4)

Back to SVMs
Using the hinge loss formulation of SVMs in (5) and taking Ω to be the identity
function, we can now use (24) to formulate a kernelized primal SVM:

min
c,b

n∑
i=1

[
1− ti(c>Ki. + b)

]+ + λc>Kc (25)

Only difference between (25) and what (24) would imply is inclusion of offset b.
Inclusion of b easily justified (and is a special case of the semiparametric
representer theorem on next slide).
Note b is not included in the regularization term in (25). Why?

Exercise: Can you relate the problem in (25) to our earlier primal formulation of
the (non-separable) SVM problem with features φ(x) = kx?

Recently, the approach for very large problems has been to solve (25) directly
using first-order methods and by smoothing the hinge loss function.

Remark: It should be clear from the RKHS formulation that the kernel trick does
not work with || · ||1 or Lasso-style regularization.

34 (Section 4)

The Semiparametric Representer Theorem
Theorem. In addition to our earlier assumptions, assume also there exists a set
of real-valued functions

ψm : X → R, m = 1, . . . ,M
with the property that the n×M matrix with elements ψm(xn) has rank M .
Then any solution f̃ to the learning problem

min
f̃ = f + h, f ∈ H

h ∈ Span{ψm, m = 1, . . . ,M}

n∑
i=1

L(f̃(xi), yi) + λΩ
(
||f ||2H

)
(26)

has the representation

f̃ =
n∑
j=1

cjkxj
+

M∑
m=1

bmψm.

The semiparametric representer theorem can be very useful in applications where
we know (typically from domain-specific knowledge) a good set of pre-selected
basis functions, ψm for m = 1, . . . ,M , and we use the RKHS component f to
smoothly fit that component of the output y that is not explained by the ψm’s.

35 (Section 4)

Ridge Regression
Recall that ridge regression solves

β̂
R

= argmin
β

1
2 ‖y− Xβ‖2 + λ

2

p∑
j=1

β2
j


- shrinks regression coefficients towards 0 by imposing a penalty on their size
- λ a complexity parameter that controls the amount of shrinkage.

An equivalent formulation is

β̂
R

= argmin
β

{
1
2 ‖y− Xβ‖2

}
(27)

subject to
p∑
j=1

β2
j ≤ s

Standard (why?) to scale and standardize inputs before applying ridge
regression.

36 (Section 4)

Ridge Regression
Note β0 is generally not shrunk so that procedure does not depend on origin
chosen for Y .
To handle this and use matrix notation can split estimation into two steps:

1. Set β̂0 = ȳ = (
∑n
i=1 yi) /n

2. Center the inputs so that xij → xij − x̄j .
Now estimate β1, . . . , βp using ridge regression without intercept and using
the centered xij ’s.

Dropping β0 from β, the ridge regression of step 2 therefore solves

β̂R = argmin
β

{
1
2 ‖y− Xβ‖2 + λ

2 β>β

}
which has solution

β̂R = (X>X + λIm)−1X>y. (28)

Question: Can we apply the kernel trick to (28)?
37 (Section 4)

Kernel Ridge Regression
Answer: Yes but a little work is required since (28) not (yet) in a form that only
requires inner products. To fix this, we need the following matrix identity.

Matrix Identity: Let P, B and R denote matrices of conformable sizes. Then(
P−1 + B>R−1B

)−1
B>R−1 = PB>

(
BPB> + R

)−1
. (29)

Take P = λ−1Im, B = X and R = In in (29) to obtain

β̂R = λ−1X>
(
λ−1XX> + In

)−1
y

= X>
(
XX> + λIn

)−1
y. (30)

Our prediction ŷ(xnew) at a new point, xnew, will therefore be

ŷ(xnew) = β̂
>
R xnew = y>

(
XX> + λIn

)−1
Xxnew (31)

38 (Section 4)

Kernel Ridge Regression
Note that (31) is now amenable to the kernel trick as it only depends on X via
inner products.

Therefore have the following more general version of (31)

β̂
>
R xnew = y> (K + λIn)−1 k(xnew) (32)

where we recall K = φφ> is the n× n Gram matrix with

Kij := φ(xi)>φ(xj) =: k(xi, xj)

and k(xnew) is the n× 1 vector with ith element k(xi, xnew).

Exercise: Show that we can obtain (32) directly from (24) by defining the loss
function L and the regularization function Ω appropriately.

Remark: The offset, β0, can be handled as on Slide 37 or directly via the
semi-parametric representer theorem.

39 (Section 4)

Constructing New Kernels (Bishop)
We assume:

k1(x, x′) and k2(x, x′) are valid kernels.
c > 0 is a constant.
f(·) is any function.
q(·) is a polynomial with nonnegative coefficients.
φ(x) is a function from x to RM .
k3(·, ·) is a valid kernel in RM .
A is a symmetric positive semi-definite matrix.
xa and xb are variables (not necessarily disjoint) with x = (xa, xb).
ka and kb are valid kernel functions over their respective spaces.

40 (Section 5)

Constructing New Kernels (Bishop)
Then the following are all valid kernels:

k(x, x′) = ck1(x, x′)
k(x, x′) = f(x)k1(x, x′)f(x′) (33)
k(x, x′) = q(k1(x, x′))
k(x, x′) = exp(k1(x, x′)) (34)
k(x, x′) = k1(x, x′) + k2(x, x′)
k(x, x′) = k1(x, x′)k2(x, x′)
k(x, x′) = k3(φ(x),φ(x′))
k(x, x′) = x>Ax′

k(x, x′) = ka(xa, x′a) + kb(xb, x′b)
k(x, x′) = ka(xa, x′a)kb(xb, x′b)

41 (Section 5)

The Gaussian kernel
The Gaussian kernel is given by:

k(x, x′) = exp
(
−||x− x′||2

2σ2

)
(35)

It is a valid kernel because

exp
(
−||x− x′||2

2σ2

)
= exp

(
−x>x
2σ2

)
exp

(
x>x′
σ2

)
exp

(
−x′>x′

2σ2

)

= f(x) exp
(

x>x′
σ2

)
f(x′)

and now we can apply (33) and (34).

42 (Section 5)

Constructing Kernels for Other Objects
The kernel trick can be extended to inputs that are symbolic and not just vectors
of real numbers.

Examples of such inputs are graphs, sets, strings, and text documents.

e.g. Consider a fixed set and define the space consisting of all possible subsets of
this set. If A1 and A2 are two such subsets then let

k(A1, A2) := 2|A1∩A2|

where |A| denotes the number of subsets in A.

k(·, ·) is a valid kernel because it can be shown to correspond to an inner product
in a feature space

- so we could easily use SVMs to classify these sets.

43 (Section 5)

String Kernels
In many applications such as text mining and computational biology it’s
important to be able to quntify how similar two strings are.

e.g. Consider following two strings, x1 and x2, from Chap. 9 of Hastie and Efron:
IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK
LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

Each string represents a protein molecule with each character representing an
amino acid which can be one of 20 different types.

Question: How similar are these strings?

To answer this, can treat each string x as a document consisting of letters from
an alphabet of size 20.

Will define a feature vector hm(x) to consist of counts of all m-grams in the
protein of length m.

44 (Section 5)

String Kernels
e.g. If m = 3 then 203 = 8000 possible m-grams so h3(x) a 8000× 1 vector.
Let hmSTR(x) = # times m-gram “STR” appears in x. Then have

h3
LQE(x1) = 1
h3

LQE(x2) = 2.

Often want to take m quite large in which case 20m will be very large and then
calculating inner products Km(x1, x2) := 〈hm(x1), hm(x2)〉 very expensive.
But hm(x) generally very sparse and calculating kernel Km(x1, x2) can be done
efficiently using tree methods without ever having to calculate feature vectors. 2

More generally, let S∗ denote set of all possible strings that can be constructed
using symbols from a dictionary / alphabet S.
Given strings x, y ∈ S∗ can define the kernel

k(x, y) :=
∑
s∈S∗

wshs(x)hs(y)

where ws ≥ 0 and hs(x) = # times substring s appears in x.
45 (Section 5)

Appendix: Mercer’s Theorem
Mercer’s Theorem provides another approach to developing theory of RKHS’s.

Suppose again that we have a symmetric positive semi-definite (and continuous)
kernel k as defined on slide 26.

Ignoring technical details, k(x, z) can be represented via an orthornormal eigen
expansion

k(x, z) =
∞∑
i=1

λiφi(x)φi(z) (36)

with each λi ≥ 0,
∑∞
i=1 λi <∞ and where the convergence in (36) is uniform

and absolute so that

lim
n→∞

sup
x,z
|k(x, z)−

n∑
i=1

λiφi(x)φi(z)| = 0.

46 (Section 6)

Appendix: Mercer’s Theorem
Now define HK to be the set of functions f of the form

f(x) =
∞∑
i=1

ciφi(x).

with

||f ||2HK
:=

∞∑
i=1

c2
i

λi
<∞. (37)

Corresponding inner product is

〈f, g〉 :=
∞∑
i=1

(bici)/λi

where g(x) :=
∑∞
i=1 biφi(x).

Clear from (37) that ci’s must go to zero quickly if f ∈ HK . Why?
- so dividing by λi’s in (37) amounts to imposing a smoothness condition on

the our space HK .
47 (Section 6)

Appendix: Mercer’s Theorem
So the penalty term Ω

(
||f ||2H

)
in (21) acts like a roughness penalty as it

penalizes functions with large coefficients on the eigen functions with small
corresponding eigen values.

We can also show the representer property since

〈f(·), k(·, z)〉 = 〈
∞∑
i=1

ciφi(·),
∞∑
i=1

λiφi(z)φi(·)〉

=
∞∑
i=1

ciλiφi(z)
λi

=
∞∑
i=1

ciφi(z)

= f(z)

as desired.

48 (Section 6)

	Motivation: SVMs
	The Separable Case
	The Non-Separable Case
	The Dual Problem

	The Kernel Trick
	Back to SVMs

	Reproducing Kernel Hilbert Spaces
	Introduction
	Some Functional Analysis
	Reproducing Kernel Hilbert Spaces

	The Representer Theorem
	Back to SVMs
	The Semiparametric Representer Theorem
	Kernel Ridge Regression

	Constructing New Kernels
	Appendix: Mercer's Theorem

