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The EM Algorithm (for Computing ML Estimates)
Assume the complete data-set consists of Z = (X ,Y)

– but only X is observed.
The complete-data log likelihood is denoted by l(θ;X ,Y) where θ is the unknown
parameter vector for which we wish to find the MLE.

E-Step: Compute the expected value of l(θ;X ,Y) given the observed data, X ,
and the current parameter estimate θold . In particular, we define

Q(θ; θold) := E [l(θ;X ,Y) | X , θold ]

=
∫

l(θ;X , y) p(y | X , θold) dy (1)

– p(· | X , θold) ≡ conditional density of Y given observed data, X , and θold

– Q(θ; θold) is the expected complete-data log-likelihood.

M-Step: Compute θnew := maxθ Q(θ; θold).
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The EM Algorithm
Now set θold = θnew and iterate E- and M-steps until sequence of θnew’s
converges.

Convergence to a local maximum can be guaranteed under very general
conditions

– will see why below.

If suspected that log-likelihood function has multiple local maximums then the
EM algorithm should be run many times

– using a different starting value of θold on each occasion.

The ML estimate of θ is then taken to be the best of the set of local maximums
obtained from the various runs of the EM algorithm.
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Why Does the EM Algorithm Work?
Will use p(· | ·) to denote a generic conditional PDF. Now observe that

l(θ;X ) = ln p(X | θ)

= ln
∫

p(X , y | θ) dy

= ln
∫ p(X , y | θ)

p(y | X , θold)p(y | X , θold) dy

= ln E
[

p(X ,Y | θ)
p(Y | X , θold) | X , θold

]
≥ E

[
ln
(

p(X ,Y | θ)
p(Y | X , θold)

)
| X , θold

]
by Jensen’s inequality (2)

= E [ln p(X ,Y | θ) | X , θold ] − E [ln p(Y | X , θold) | X , θold ]
= Q(θ; θold) − E [ln p(Y | X , θold) | X , θold ] (3)

Also clear (why?) that inequality in (2) is an equality if we take θ = θold .
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Why Does the EM Algorithm Work?
Let g(θ | θold) denote the right-hand-side of (3).

Therefore have
l(θ;X ) ≥ g(θ | θold)

for all θ with equality when θ = θold .

So any value of θ that increases g(θ | θold) beyond g(θold | θold) must also
increase l(θ;X ) beyond l(θold ;X ).

The M-step finds such a θ by maximizing Q(θ; θold) over θ
– this is equivalent (why?) to maximizing g(θ | θold) over θ.

Also worth noting that in many applications the function Q(θ; θold) will be a
convex function of θ

– and therefore easy to optimize.
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Schematic for general E-M algorithm

θold θnew

L (q, θ)

ln p(X|θ)

Figure 9.14 from Bishop (where L(q, θ) is g(θ | θold) in our notation)
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E.G. Missing Data in a Multinomial Model
Suppose x := (x1, x2, x3, x4) is a sample from a Mult(n, πθ) distribution where

πθ =
(

1
2 + 1

4θ,
1
4 (1− θ), 1

4 (1− θ), 1
4θ
)
.

The likelihood, L(θ; x), is then given by

L(θ; x) = n!
x1!x2!x3!x4!

(
1
2 + 1

4θ
)x1 (1

4 (1− θ)
)x2 (1

4 (1− θ)
)x3 (1

4θ
)x4

so that the log-likelihood l(θ; x) is

l(θ; x) = C + x1 ln
(

1
2 + 1

4θ
)

+ (x2 + x3) ln (1− θ) + x4 ln (θ)

– where C is a constant that does not depend on θ.

Could try to maximize l(θ; x) over θ directly using standard non-linear
optimization algorithms

– but we will use the EM algorithm instead.
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E.G. Missing Data in a Multinomial Model
To do this we assume the complete data is given by y := (y1, y2, y3, y4, y5) and
that y has a Mult(n, π∗θ) distribution where

π∗θ =
(

1
2 ,

1
4θ,

1
4 (1− θ), 1

4 (1− θ), 1
4θ
)
.

However, instead of observing y we only observe (y1 + y2, y3, y4, y5), i.e, x.

Therefore take X = (y1 + y2, y3, y4, y5) and take Y = y2.

Log-likelihood of complete data then given by

l(θ;X ,Y) = C + y2 ln (θ) + (y3 + y4) ln (1− θ) + y5 ln (θ)

where again C is a constant containing all terms that do not depend on θ.

Also “clear” that conditional “density” of Y satisfies

f (Y | X , θ) = Bin
(

y1 + y2,
θ/4

1/2 + θ/4

)
.

Can now implement the E-step and M-step.
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E.G. Missing Data in a Multinomial Model

Recall that Q(θ; θold) := E [l(θ;X ,Y) | X , θold ].

E-Step: Therefore have

Q(θ; θold) := C + E [y2 ln (θ) | X , θold ] + (y3 + y4) ln (1− θ) + y5 ln (θ)
= C + (y1 + y2)pold ln (θ) + (y3 + y4) ln (1− θ) + y5 ln (θ)

where
pold := θold/4

1/2 + θold/4
. (4)
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E.G. Missing Data in a Multinomial Model

M-Step: Must now maximize Q(θ; θold) to find θnew.

Taking the derivative we obtain

dQ
dθ = (y1 + y2)

θ
pold −

(y3 + y4)
1− θ + y5

θ
= 0 when θ = θnew

where
θnew := y5 + pold(y1 + y2)

y3 + y4 + y5 + pold(y1 + y2) . (5)

Equations (4) and (5) now define the EM iteration
– which begins with some judiciously chosen value of θold .
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E.G. Normal Mixture Models Revisited
Clustering via normal mixture models is an example of probabilistic clustering

– we assume the data are IID draws
– will consider only the scalar case but note the vector case is similar.

So suppose X = (X1, . . . ,Xn) are IID random variables each with PDF

fx(x) =
m∑

j=1
pj

e−(x−µj)2/2σ2
j√

2πσ2
j

where pj ≥ 0 for all j and where
∑

j pj = 1

– parameters are the pj ’s, µj ’s and σj ’s
– typically estimated via MLE
– which we can do via the EM algorithm.
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Normal Mixture Models Revisited
We assume the presence of an additional or latent random variable, Y , where

P(Y = j) = pj , j = 1, . . . ,m.

Realized value of Y then determines which of the m normals generates the
corresponding value of X

– so there are n such random variables, (Y1, . . . ,Yn) := Y.

Note that
fx|y(xi | yi = j, θ) = 1√

2πσ2
j

e−(xi−µj)2/2σ2
j (6)

where θ := (p1, . . . , pm, µ1, . . . , µm, σ1, . . . , σm) is the unknown parameter
vector.

The complete data likelihood is given by

L(θ;X ,Y) =
n∏

i=1
pyi

1√
2πσ2

yi

e−(xi−µyi )2/2σ2
yi .
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Normal Mixture Models
The EM algorithm starts with an initial guess, θold , and then iterates the E-step
and M-step until convergence.

E-Step: Need to compute Q(θ; θold) := E [l(θ;X ,Y) | X , θold ].

Straightforward to show that

Q(θ; θold) =
n∑

i=1

m∑
j=1

P(Yi = j | xi , θold) ln
(
fx|y(xi | yi = j, θ) P(Yi = j | θ)

)
.

(7)
Note that fx|y(xi | yi = j, θ) is given by (6) and that P(Yi = j | θold) = pj,old .

Finally, can compute (7) analytically since

P(Yi = j | xi , θold) = P(Yi = j, Xi = xi | θold)
P(Xi = xi | θold)

=
fx|y(xi | yi = j, θold) P(Yi = j | θold)∑m

k=1 fx|y(xi | yi = k, θold) P(Yi = k | θold)
. (8)
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Normal Mixture Models
M-Step: Can now maximize Q(θ; θold) by setting the vector of partial
derivatives, ∂Q/∂θ, equal to 0 and solving for θnew.

After some algebra, we obtain

µj,new =
∑n

i=1 xiP(Yi = j | xi , θold)∑n
i=1 P(Yi = j | xi , θold)

(9)

σ2
j,new =

∑n
i=1(xi − µj)2P(Yi = j | xi , θold)∑n

i=1 P(Yi = j | xi , θold)
(10)

pj,new = 1
n

n∑
i=1

P(Yi = j | xi , θold). (11)

Given an initial estimate, θold , the EM algorithm cycles through (9) to (11)
repeatedly, setting θold = θnew after each cycle, until the estimates converge.
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Kullback-Leibler Divergence
Let P and Q be two probability distributions such that if Q(x) = 0 then
P(x) = 0.

The Kullback-Leibler (KL) divergence or relative entropy of Q from P is defined
to be

KL(P ||Q) =
∫

x
P(x) ln

(
P(x)
Q(x)

)
(12)

with the understanding that 0 log 0 = 0.

The KL divergence is a fundamental concept in information theory and machine
learning.

Can imagine P representing some true but unknown distribution that we
approximate with Q

– KL(P ||Q) then measures the “distance” between P and Q.

This interpretation is valid because we will see below that KL(P ||Q) ≥ 0
– with equality if and only if P = Q.
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Kullback-Leibler Divergence
The KL divergence is not a true measure of distance since it is:

1. Asymmetric in that KL(P ||Q) 6= KL(Q ||P)
2. And does not satisfy the triangle inequality.

In order to see that KL(P ||Q) ≥ 0 we first recall that a function f (·) is convex
on R if

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) for all α ∈ [0, 1].

We also recall Jensen’s inequality:
Jensen’s Inequality: Let f (·) be a convex function on R and suppose E[X ] <∞
and E[f (X)] <∞. Then f (E[X ]) ≤ E[f (X)].
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Kullback-Leibler Divergence
Noting that − ln(x) is a convex function we have

KL(P ||Q) = −
∫

x
P(x) ln

(
Q(x)
P(x)

)
≥ − ln

(∫
x

P(x) Q(x)
P(x)

)
by Jensen’s inequality

= 0.

Moreover it is clear from (12) that KL(P ||Q) = 0 if P = Q.

In fact because − ln(x) is strictly convex it is easy to see that KL(P ||Q) = 0
only if P = Q.
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A Nice Optimization “Trick”
Suppose c ∈ Rn

+ and we wish to maximize
∑n

i=1 ci ln(qi) over pmf’s,
q = {q1, . . . , qn}.
Let p = {p1, . . . , pn} where pi := ci/

∑
j cj so that p is a (known) pmf.

We then have:

max
q

n∑
i=1

ci ln(qi) =
( n∑

i=1
ci

)
max

q

{ n∑
i=1

pi ln(qi)
}

=
( n∑

i=1
ci

)
max

q

{ n∑
i=1

pi ln(pi)−
n∑

i=1
pi ln

(
pi

qi

)}
,

=
( n∑

i=1
ci

)( n∑
i=1

pi ln(pi)−min
q

KL(p ||q)
)

from which it follows (why?) that the optimal q∗ satisfies q∗ = p.

Could have saved some time using this trick in earlier multinomial model example
– in particular obtaining (5)

19 (Section 2)



The EM Algorithm Revisited
As before, goal is to maximize the likelihood function L(θ;X ) which is given by

L(θ;X ) = p(X | θ) =
∫

y
p(X , y | θ) dy. (13)

Implicit assumption underlying EM algorithm: it is difficult to optimize p(X | θ)
with respect to θ directly

– but much easier to optimize p(X ,Y | θ).

First introduce an arbitrary distribution, q(Y), over the latent variables, Y.

Note we can decompose log-likelihood, l(θ;X ), into two terms according to

l(θ;X ) := ln p(X | θ) = L(q, θ)︸ ︷︷ ︸
“energy”

+ KL(q || pY|X ) (14)
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The EM Algorithm Revisited
L(q, θ) and KL(q || pY|X ) are the likelihood and KL divergence and are given by

L(q, θ) =
∫
Y

q(Y) ln
(

p(X ,Y | θ)
q(Y)

)
(15)

KL(q || pY|X ) = −
∫
Y

q(Y) ln
(

p(Y |X , θ)
q(Y)

)
.

It therefore follows (why?) that L(q, θ) ≤ l(θ;X ) for all distributions, q(·).

Can now use the decomposition of (14) to define the EM algorithm, beginning
with an initial parameter estimate, θold .

21 (Section 2)



The EM Algorithm Revisited
E-Step: Maximize the lower bound, L(q, θold), with respect to q(·) while keeping
θold fixed.

In principle this is a variational problem since we are optimizing a functional, but
the solution is easily found.
First note that l(θold ;X ) does not depend on q(·).

Then follows from (14) with θ = θold that maximizing L(q, θold) is equivalent to
minimizing KL(q || pY|X ).

Since this latter term is always non-negative we see that L(q, θold) is optimized
when KL(q || pY|X ) = 0

– by earlier observation, this is the case when we take q(Y) = p(Y |X , θold).

At this point we see that the lower bound, L(q, θold), now equals current value of
log-likelihood, l(θold ;X ).
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The EM Algorithm Revisited
M-Step: Keep q(Y) fixed and maximize L(q, θ) over θ to obtain θnew.

This will therefore cause the lower bound to increase (if it is not already at a
maximum)

– which in turn means the log-likelihood must also increase.

Moreover, at this new value θnew it will no longer be the case that
KL(q || pY|X ) = 0

– so by (14) the increase in the log-likelihood will be greater than the
increase in the lower bound.
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Comparing Classical EM With General EM
It is instructive to compare the E-step and M-step of the general EM algorithm
with the corresponding steps of the original EM algorithm.

To do this, first substitute q(Y) = p(Y |X , θold) into (15) to obtain

L(q, θ) = Q(θ; θold) + constant (16)

where Q(θ; θold) is the expected complete-date log-likelihood as defined in (1).

The M-step of the general EM algorithm is therefore identical to the M-step of
original algorithm since the constant term in (16) does not depend on θ.

The E-step in general EM algorithm takes q(Y) = p(Y |X , θold) which, at first
glance, appears to be different to original E-step.

But there is no practical difference: original E-step simply uses p(Y |X , θold) to
compute Q(θ; θold) and, while not explicitly stated, the general E-step must also
do this since it is required for the M -step.
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E.G. Imputing Missing Data (Again)
N respondents were asked to answer m questions each. The observed data are:

viq =

 1 if respondent i answered yes to question q
0 if respondent i answered no to question q
− if respondent i did not answer question q

yiq =
{

1 viq ∈ {0, 1}
0 otherwise

We assume the following model:
K classes of respondents: π = (π1, . . . , πK ) with πk = P(respondent in class k)
Latent variables zi ∈ {1, . . . ,K} for i = 1, . . . ,N
Class dependent probability of answers: σkq = P(viq = 1 | zi = k)
Parameters θ = (π,σ)

Log-likelihood with X := {viq | i = 1, . . . ,N , q = 1, . . . ,m}:

l(θ;X ) =
N∑

i=1
ln

 K∑
k=1

πk
∏

q:yiq=1
σ

viq
kq (1− σkq)(1−viq)


Question: What implicit assumptions are we making here?

25 (Section 2)



EM for Imputing Missing Data
Take Y := (z1, . . . , zN ).

Complete-data log-likelihood then given by

l(θ;X ,Y) =
N∑

i=1

K∑
k=1

1{zi=k} ln
(
πk

∏
q:yiq=1

σ
viq
kq (1− σkq)(1−viq)

)
E-Step: Need to compute Q(θ; θold). We have

Q(θ; θold) = E [l(θ;X ,Y) | X , θold ]

=
N∑

i=1

K∑
k=1

γold
ik ln

(
πk

∏
q:yiq=1

σ
viq
kq (1− σkq)(1−viq)

)
where

γold
ik := P(zi = k | vi , θold) ∝ πold

k P(vi | zi = k)
= πold

k
∏

q:yiq=1
(σold

kq )viq (1− σold
kq )(1−viq)
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EM for Imputing Missing Data
M-Step: Now solve for θnew = maxθ Q(θ; θold):

We have

Q(θ; θold) =
K∑

k=1

( N∑
i=1

γold
ik

)
ln(πk) +

K∑
k=1

m∑
q=1

( ∑
i:yiq=1

γold
ik viq

)
ln
(
σkq
)

+
( ∑

i:yiq=1
γold

ik (1− viq)
)

ln
(
1− σkq

)

Solving maxθ Q(θ; θold) yields

πnew
k =

∑N
i=1 γ

old
ik∑N

i=1
∑K

j=1 γ
old
ij

σnew
kq =

∑
i:yiq=1 γ

old
ik viq∑

i:yiq=1 γ
old
ik

.

Now iterate E- and M-steps until convergence.
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