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What is Classification?

Goal is to predict a categorical outcome from a vector of inputs

inputs can be quantitative, ordinal, or categorical
inputs could also be images, speech, text, networks, temporal data, spatial
data etc.

Classification algorithms require inputs to be encoded in quantitative form

can result in very high dimensional problems!

Simplest and most common type of classification is binary classification

email classification: spam or not spam?
sentiment analysis
- is the movie review good or bad?
- is this good news for the stock or bad news?
fraud detection
revenue management: will a person buy or not?
medical diagnosis: does a patient have a disease or not?
will somebody vote for Obama or not?
is somebody a terrorist or not?

But also have classification problems with multiple categories.
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What is Classification?

Classification often used as part of a decision support system.

There are many(!) different classification algorithms
- will cover many of the best known algorithms

- but will not have time to cover all of them such as neural networks,
ensemble methods etc.

- will cover support vector machines later in the course.

Most classification algorithms can be categorized as generative or discriminative.
Classification algorithms learn a classifier using training data

- then used to predict category or class for new inputs or test data.

Will use X or x to denote vector of inputs and G or Y to denote category or
class.
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Generative Classification Algorithms

Generative methods focus on modeling P(X, G) and then use G(X) as a classifier
where

G(X) := argglaxls(G|X) — argmax PX|G)P(G) (1)

G2 P(X\ DP(G)
= argglaxP(X\G) (G)

Examples include linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA) and naive Bayes.

LDA and QDA assume Gaussian densities for P(X| Q).

Naive Bayes assumes

P(X|G) HP (X;G)

so the features are independent conditional on G.

- a strong and generally unrealistic assumption but naive Bayes still often
works very well in practice.
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Discriminative Classification Algorithms

Discriminative methods focus on modeling P(G|X) directly

- examples include least squares or regression-based classifiers, logistic
regression and Bayesian logistic regression.

Discriminative methods may also focus on minimizing the expected classification
error directly without making any assumptions regarding P(X, G) or P(G|X).
Examples include:

® classification trees

® [-nearest neighbors

® support vector machines (SVMs)

® (deep) neural networks.
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k-Nearest Neighbors

k-nearest neighbors (k-NN) is a very simple classification algorithm.

Given a new data-point, x, that needs to be classified, we find the k£ nearest
neighbors of x and use majority voting of these neighbors to classify x.
Need a metric to measure distance between data-points

- easy for quantitative variables and also straightforward for ordinal variables

- generally a good idea (why?) to standardize features so they have mean 0
and variance 1

But constructing a metric not so straightforward for other variables including
categorical variables, text documents, images, etc.

- choice of metric can be very important in these situations.

k is usually chosen by using separate training and test sets, or via cross-validation
- to be covered soon.

Despite its simplicity, k~-NN often works very well in practice but can be
computationally expensive to classify new points.

k-NN's can also be used for regression — /i-NN regression
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k-Nearest Neighbors

A Demo of k-Nearest Neighbors by Antal van den Bosch
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http://videolectures.net/aaai07_bosch_knnc/

Kernel Classification

k-NN gives equal weight to all k£ nearest neighbors but it may make more sense
to give more weight to the closest neighbors —leads to kernel classification.

With kernel classification every training point, x;, gets a vote of K(x,x;) when
classifying a new point, x.

e.g. A Gaussian-type kernel takes the form

K(x,x;) = = dxxi) /o
where d(x,x;) is a distance measure between x and x;.
Question: What happens as 0 — 00?

Question: What happens as 0 — 07
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Model Assessment

Goal of model selection: choose the model with the best predictions on new data.

Complex models generally fit a given training set better than less complex models
- follows since more complex models have more flexibility

- but often results in over-fitting in which case the fitted complex model does
not generalize well.

This is related to the bias-variance decomposition that we saw earlier when we
studied regression.

Training error refers to classification error on the data-set that was used to train
the classifier.

Test error refers to classification error on a new or holdout data-set that was not
used to train the classifier

- provides an estimate of generalization error.

10 (Section 3)



Training Error Versus Test Error
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Figure taken from Ben Taskar’s web-site at U Penn.

Training error generally declines as model complexity increases. Why?
However, true error, i.e. test or generalization error, tends to decrease for a while

and then increase as it begins to over-fit the data.
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Approaches to Control Over-Fitting

Many approaches used to control over-fitting:

® The Akaike information criterion (AIC) and Bayesian information criterion
(BIC) penalize the effective # of parameters
- used in MLE settings when we can compute effective # of parameters.

® Bayesian models control over-fitting naturally by modeling parameters as
random variables
- estimation in these models therefore implicitly accounts for parameter

uncertainty
- Bayesian models are very popular in statistics and ML.

® Regularization approaches that explicitly penalize parameter magnitudes
along with the misclassification or prediction error in the objective function.

Smaller magnitude parameters preferred to larger magnitude parameters
with degree of regularization controlled via a regularization parameter, A.

e.g. ridge regression solves

.1 2 1 2
agn {3 Iy = X8I+ - 31815 |
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Approaches to Control Over-Fitting

® A standard approach is to use training, validation and test sets.

® Another very useful technique is cross-validation

- often the tool of choice
- and also used to choose regularization parameters; e.g. A in ridge regression.

For now will restrict ourselves to the training, validation and test set approach

- will consider cross-validation later.
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Training, Validation and Test Sets

To assess model performance we can partition the data into a training set and a
validation set.

Training set used to construct the classifier(s) and the validation set is used to
assess their performance(s).

The performance of each classifier on validation set used to obtain an unbiased
estimator of the classifier's performance.

If we have trained many classifiers then in the model selection stage can choose
the classifier that performed best on the validation set.

Question: When we choose a classifier this way, is its performance on the
validation set still an unbiased estimator of its performance?

Answer: No. Why?

As a result we would like an additional test set which is used to evaluate the
selected classifier. The test set is never used in the training and validation stages.
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Optimal Bayes Classifier

Consider again the generative framework where we have the joint distribution
function, P(X, G), for the feature vector, X, and the associated category, G.

For a given classifier, G(-), and a given loss function, L(G, G(X)), the expected
prediction error (EPE) is given by

EPE = Exc [L a,

Wish to minimize EPE as a function of X and we can do it pointwise to obtain

K
G(x) = argngnZL(Gk,G) P(Gi|X = x) (2)
Y k=1
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Optimal Bayes Classifier

A commonly used loss function for classification problems is the 0 — 1 loss
function which assigns a loss of 0 to correctly classified data-points and 1 to
those that are incorrectly classified.

If we now assume this loss function then (2) reduces to

G(x) = argmin|[l —P(G|X = x)]
Geg
= argmax P(G|X = x)
Geg

so that we classify to the most probable class.
This is the Bayes classifier and error rate of this classifier is the Bayes rate.

The Bayes rate is the best possible error rate for the 0 — 1 loss function

- but generally not achievable in practice because we do not know P(X, G).

But can be computed in simulated problems where we wish to evaluate the
performance of other classification algorithms.
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Naive Bayes

Recall naive Bayes is a generative classifier that estimates P(X, G) and assumes

P(X|G) HP X;| @) (3)

so the features are independent condltlonal on G.

Since P(X, G) = P(X|G)P(G), naive Bayes estimates P(() and the P(X;|G)'s
separately via MLE and then classifies according to

G(x) = argmaxP(G|X = x)
Geg
= argmaxP(G)P(x|G)
Geg
= argmaxP(G P(z:|G
g ( )1:[ (2] G)

Assumption (3) is strong and generally unrealistic
- but when X is high-dimensional and categorical estimating P(X, G) is
generally (why?) not possible
- so assumption (3) makes estimation much easier and naive Bayes still often
works very well in practice!
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Naive Bayes in Action

X2

(1] 7

X1

Naive Bayes: There are 2 equiprobable classes and the class-conditional densities are bivariate
Normal. The assumptions of naive Bayes do not apply. Why?

18 (Section 5)



Naive Bayes in Action

Naive Bayes: The contours of the fitted class-conditional densities. These densities are also

assumed to be bivariate Normal. The naive Bayes classifier is given by the red curve.
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Naive Bayes and Text Classification

Naive Bayes often works well when the data cannot support a more complex
classifier — this is the bias-variance decomposition again.

Has been very successful in text classification or sentiment analysis
- e.g. is an email spam or not?

But how would you encode an email into a numerical input vector?

A simple and common way to do this is via the bag-of-words model
- completely ignores the ordering of the words
- stop-words such as “the”, “and”, “of", “about” etc. are thrown out
- words such as “walk”, "walking”, “walks” etc. all identified as “walk”

Email classification then done by assuming a given email comes from either a
“spam” bag or a “non-spam”bag

- naive Bayes assumes P(spam|X) o< P(spam) [] P (word|spam).

word €email
Bag-of-words also often used in document retrieval and classification
- leads to the term-document matrix
- also then need a measure of similarity between documents, e.g. cosine
distance possibly in TF-IDF version of term-document matrix.

‘ 20 (Section 5)



Classification Using Linear Regression

The 1-of-K encoding scheme uses K binary response variables to encode each

data-point with
1, ifG=k
Yy = { 0, otherwise.

Linear regression approach to classification fits a linear regression with Y as the
response variable

- so K different linear regressions are performed.

Let fk(x) denote the fitted regression when Y}, is the response variable. Classifier
then given by

G(x) = ar%éngax Fe(x)

so we simply classify to the largest component.

21 (Section 6)



Cons of Doing Classification Via Regression

Lacks robustness to outliers like all least squares methods.

Masking is a major problem when there is more than two classes

— not too surprising given that least-squares solutions correspond to MLE
estimates for conditional Gaussian distributions and not conditional Bernoulli
distributions.

Figures on slides (26) and (44) demonstrate this masking phenomenon.

According to HTF all polynomial terms up to degree K — 1 might be needed to
avoid this masking problem.

Masking not an issue with other classification techniques that we consider.
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Linear Discriminant Analysis (LDA)

LDA a generative model that assumes class-conditional densities, f;(x), are

Gaussian with a common covariance matrix so that
1 o~ x—)

fk(x) = (27T)M/2|2|1/2
k) we see from (1) that the LDA classifier satisfies

Fu(X) 7
Ry TENLS

TS (x—py)

Writing 7, for P(G =
(4)

G(x) = argmax
k

where we have used fi(-) and 7, to denote MLE estimates of fi.(-) and 7 with

iy = Ni/N
f, = D xi/N
gi=k
K N o \T
& Dkt Zg,;:k (xi — ) (x; — f1y,)
¥ = N-K ()
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Linear Discriminant Analysis (LDA)

Can also calculate log-ratio between two classes, k and [, to get

P(G =k|X =x) g 1 T o1
1 _— = — — (i ) 2 (L, — {1
%8 B(G = IX =) og = — 5 (Bt i) (A — )
o1 .
+xT3 (- Ay (6)

Based on (6) can define the linear discriminant functions

a1, . 1, t&a-1.
Ok(x) = xTSfy + logdr — SaS iy (7)
kth intercept

fork=1,...,K.

LDA classifier of (4) then reduces to
G(x) = argmax 0z (x).
k
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Linear Discriminant Analysis (LDA)

When there are just 2 classes it can be shown the linear regression and LDA
classifiers only differ in their intercepts

- not true for K > 2.

But since LDA is based on Gaussian assumptions and linear regression makes no
probabilistic assumptions, Hastie et al. suggest choosing the intercepts in (7) to
minimize the classification error

- they report this works well in practice.

LDA does not suffer from the masking problem of linear regression.
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Linear Regression Linear Discriminant Analysis

Xz

X 1 X 1

Figure 4.2 from HTF: The data come from three classes in R? and are easily separated by
linear decision boundaries. The right plot shows the boundaries found by linear discriminant
analysis. The left plot shows the boundaries found by linear regression of the indicator response

variables. The middle class is completely masked (never dominates).



X

Figure 4.6 from ISLR: An example with three classes. The observations from each class are
drawn from a multivariate Gaussian distribution with p = 2, with a class-specific mean vector
and a common covariance matrix. Left: Ellipses that contain 95% of the probability for each of
the three classes are shown. The dashed lines are the Bayes decision boundaries. Right: 20
observations were generated from each class, and the corresponding LDA decision boundaries
are indicated using solid black lines. The Bayes decision boundaries are once again shown as

dashed lines.



The Default Data from ISLR

ISLR use LDA to obtain a classification rule for default / non-default on the basis
of: (i) credit card balance and (ii) student status.

There were 10,000 training samples and the overall default rate was 3.33%.

The training error rate of LDA was 2.75%. But how good is this?

- note training error rate will usually be biased low and therefore lower than
test / generalization error

- for comparison, how well does the useless classifier that always predicts
non-default do?

We are often interested in breaking out the (training) error rate into the two
possible types of error:

1. False positives
2. False negatives.

This leads to the so-called confusion matrix.
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The Confusion Matrix

True default status
No Yes | Total
Predicted No | 9,644 252 | 9,896

default status  Yes 23 81 104
Total | 9,667 333 | 10,000

Table 4.4 from ISLR: A confusion matrix compares the LDA predictions to the true default
statuses for the 10,000 training observations in the Default data set. Elements on the diagonal
of the matrix represent individuals whose default statuses were correctly predicted, while
off-diagonal elements represent individuals that were misclassified. LDA made incorrect
predictions for 23 individuals who did not default and for 252 individuals who did default.

Note that the LDA classifier only predicts 81/(81 + 252) = 24.3% of the true
defaults.

Do you think this would be acceptable? If not, do we need to abandon LDA or
can we somehow “rescue” it?
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The Confusion Matrix for a Different Threshold

True default status

No Yes | Total
Predicted No 9,432 138 | 9,570
default status  Yes 235 195 430
Total | 9,667 333 | 10,000

Table 4.5 from ISLR: A confusion matrix compares the LDA predictions to the true default

statuses for the 10,000 training observations in the Default data set, using a modified threshold

value that predicts default for any individuals whose posterior default probability exceeds 20%.

We can rescue LDA by simply adjusting the threshold to emphasize one type of

error over another.

In Table 4.5 we “predict” default if the LDA model has

Prob (default = Yes| X = x) > 0.2.

What happens the overall training error rate with this new rule? Do we care?
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The Tradeoff from Modifying the Threshold
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Figure 4.7 from ISLR: For the Default data set, error rates are shown as a function of the
threshold value for the posterior probability that is used to perform the assignment. The black
solid line displays the overall error rate. The blue dashed line represents the fraction of
defaulting customers that are incorrectly classified, and the orange dotted line indicates the

fraction of errors among the non-defaulting customers.

Domain specific knowledge required to decide on appropriate threshold
- the ROC curve often used for this task.
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Previous slide: Figure 4.8 from ISLR: A ROC curve for the LDA classifier on the Default data.
It traces out two types of error as we vary the threshold value for the posterior probability of
default. The actual thresholds are not shown. The true positive rate is the sensitivity: the
fraction of defaulters that are correctly identified, using a given threshold value. The false
positive rate is 1-specificity: the fraction of non-defaulters that we classify incorrectly as
defaulters, using that same threshold value. The ideal ROC curve hugs the top left corner,
indicating a high true positive rate and a low false positive rate. The dotted line represents the
“no information” classifier; this is what we would expect if student status and credit card

balance are not associated with probability of default.

Overall performance of the classifier — summarized over all possible thresholds —
is given by the AUC or “area under the curve”.

The ideal classifier will have an AUC of 1 and will hug top left corner.

ROC curves are useful for comparing classifiers as they factor in all possible
thresholds.

Clearly we can alter the threshold for many classifiers and so confusion matrix /
ROC curve can be constructed for most binary classifiers.



Quadratic Discriminant Analysis (QDA)

Drop equal covariance assumption and obtain quadratic discriminant functions

1 - 1 N N .
Or(x) = —§1og|2k\ - —i(X—Nk) ) (x— i) + log#y

QDA classifier is then

G(x) = argmax 6 (x)
k
So decision boundaries between each pair of classes then given by quadratic
functions of x.
LDA using linear and quadratic features generally gives similar results to QDA

- QDA generally preferred due to greater flexibility at the cost of more
parameters to estimate.

LDA and QDA are popular and successful classifiers

- probably because of the bias-variance decomposition and because the data
can often "only support simple decision boundaries".
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LDA with Quadratic Predictors v QDA

Figure 4.6 from HTF: Two methods for fitting quadratic boundaries. The left plot shows the
quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA in the
five-dimensional space X7, X2, X1 X2, X12, X22) The right plot shows the quadratic decision

boundaries found by QDA. The differences are small, as is usually the case.
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LDA v LDA with Quadratic Predictors

Figure 4.1 from HTF: The left plot shows some data from three classes, with linear decision
boundaries found by linear discriminant analysis. The right plot shows quadratic decision
boundaries. These were obtained by finding linear boundaries in the five-dimensional space X1,
Xo, X1X2,X12, X22. Linear inequalities in this space are quadratic inequalities in the original

space.
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LDA v QDA
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Figure 4.9 from ISLR: Left: The Bayes (purple dashed), LDA (black dotted), and QDA (green
solid) decision boundaries for a two-class problem with 31 = X>. The shading indicates the
QDA decision rule. Since the Bayes decision boundary is linear, it is more accurately
approximated by LDA than by QDA. Right: Details are as given in the left-hand panel, except
that 31 # 33. Since the Bayes decision boundary is non-linear, it is more accurately
approximated by QDA than by LDA.

Note that LDA is superior (why?!) when true boundary is (close to) linear.
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Logistic Regression

Two possible classes encoded as y € {0,1} and assume
exp (w'x)

Ply=1x,w) = Thom W)

where w an m + 1-parameter vector and first element of x is the constant 1.

Follows that
1

Ply=0x,w) = 1-P(y=1[x,w) = W(WTX)'

Given N independently distributed data-points can write likelihood as

le (1= i)'

where p;(w) := P(y; = 1|x;,w). Obtain w by maximizing the log-likelihood

N
I(w) = Z (yiw " x; — log (1 + exp(w ' x;))) (8)
i=1
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MLE Estimation

To maximize [(w) we set its derivatives to 0 and obtain

al(w) N
“ow > xi(yi — pi(w)) = 0 (9)
i=1
— so have m + 1 non-linear equations in w.

First component of each x; is 1 so at MLE solution have vazl Y = vazl pi(w).

Can solve (9) iteratively using Newton-Raphson steps

0%1(w) ) ol(w)

Owow T ow

Whpew = Wold — (
where the partial derivatives are evaluated at w, 4.

Let V be the N x N diagonal matrix with V; ; = p;(w)(1 — p;(w)).
And let X be the N x (m + 1) matrix of x;'s.
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MLE Via Iteratively Reweighted Least Squares

Can then write

= X'(y—
o (y—p)
0%1(w) T
owowT —XVX
so that (10) becomes
—1
Woew = Woid + (XTVoldX) XT (y - pold)

T LT -1
X VX)) X Vo (XWoig + V(Y — Poig))

—1
= (XTVumX) X"V 14z 014 (11)

where:
-1
® 214 = XWoiq + Vo 15(Y — Poig)
® and where V4 and p,;; are V and p, respectively, evaluated at wy4.
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MLE Via Iteratively Reweighted Least Squares

Now iterate (11) until convergence which typically occurs

- but convergence fails if the two classes are linearly separable.

If classes are linearly separable, then can handle this via regularization.
Note that w,,.,, as given by (11) also satisfies

. T
Wieyw = argmin (Zold — XW) Vold (Zold — XW)
w

— a weighted least-squares problem and hence iterating (11) is often called
iteratively reweighted least squares.

Even in the 2-class case, logistic regression has many advantages over
classification by least squares

- e.g. not sensitive to extreme or outlying points.
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Figure 4.4 from Bishop: The left plot shows data from two classes, denoted by red crosses and
blue circles, together with the decision boundary found by least squares (magenta curve) and
also by the logistic regression model (green curve). The right-hand plot shows the
corresponding results obtained when extra data points are added at the bottom left of the

diagram, showing that least squares is highly sensitive to outliers, unlike logistic regression.



Multinomial Logistic Regression

When there are K > 2 classes can use multinomial or multi-class logistic
regression.

Let Gy,..., Gk denote the K categories. Then assume
T
P(Gilx,w) = exp (w; x)

>_;exp (ijx)

and as before can use maximum likelihood to estimate the wy's.

As with 2-class case, this can be done via an iterative numerical scheme such as
Newton-Raphson.
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Figure 4.5 from Bishop: Example of a synthetic data set comprising three classes, with training
data points denoted in red (x), green (+), and blue (o). Lines denote the decision boundaries,
and the background colors denote the respective classes of the decision regions. On the left is
the result of using a least-squares discriminant. We see that the region of input space assigned
to the green class is too small and so most of the points from this class are misclassified. On the

right is the result of using logistic regressions showing correct classification of the training data.



Feature Space Expansion With Basis Functions

Have already seen how expanding the feature space can provide much greater
flexibility
- e.g. using LDA with quadratic basis functions on slide 35

Non-separable data in original feature space may become separable when features
are projected into a higher-dimensional space.

In fact the kernel "trick” allows us to project into infinite-dimensional spaces

- will discuss kernel trick later in context of support vector machines (SVMs)
and principal component analysis (PCA).
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Figure 4.12 from Bishop: lllustration of the role of nonlinear basis functions in linear
classification models. The left plot shows the original input space (z1, z2) together with data
points from two classes labeled red and blue. Two 'Gaussian’ basis functions ¢1(x) and ¢2(x)
are defined in this space with centers shown by the green crosses and with contours shown by
the green circles. The right-hand plot shows the corresponding feature space (¢1, ¢2) together
with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original
input space, shown by the black curve in the left-hand plot.



A Comparison of Classification Methods

SCENARIO 1 SCENARIO 2 SCENARIO 3
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Figure 4.10 from ISLR: Boxplots of the test error rates for each of the linear scenarios
described in the main text.

See Section 4.5 of ISLR for description of scenarios.

Here we simply note that in Fig 4.10 the true boundary in each scenario is linear
- and the linear classifiers perform best.
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A Comparison of Classification Methods
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Figure 4.11 from ISLR: Boxplots of the test error rates for each of the non-linear scenarios
described in the main text.

Here we note that in Fig 4.11 the true boundary in each scenario is non-linear
- and the linear classifiers are no longer the best.

Aside: KNN-CV refers to KNN with K chosen via cross-validation
- to be studied soon!
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Appendix: Reduced-Rank LDA

Recall our LDA analysis but now rewrite log-ratio in (6) as

P(G = kX = x) T T
log —— — A ZX e TRy S x—
8 B(G = IX = x) og =~ 5 (x— ) (x = f1)

b)) 8 ) (12)

Now let Sy := 3 = UDU " be the eigen decomposition of 33 where:
® U is an m x m orthornormal matrix
® D is a diagonal matrix of the positive eigen values of 34

Consider now a change of variable with x* := D™%/2U Tx
- so that variance-covariance matrix of x* is the identity matrix

- often called sphering the data.

1
Also implies fi}, := D7§UTﬂk are now the estimated class centroids and

ANT o— ~ * k2
(x — fu,) | Sy (x— i) = [[x* — fagll5 -
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Appendix: Reduced-Rank LDA

Can then rewrite (12) as

08 pre g = s T~ 6~ A (¢ - A
b0 =) 6 - )
= (login— 5 Ix* — afl3)
~ (tog e — 5 Ix° — Ail13). (13)

From (13) it follows that the LDA classifier satisfies

1 .
k* = argmax { log 7, — = ||x* — ﬂ;Hj }
1<k<K 2
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Appendix: LDA in Spherical Coordinates

o

Figure 4.6 from Bishop: The left plot shows samples from two classes (depicted in red and
blue) along with the histograms resulting from projection onto the line joining the class means.
Note that there is considerable class overlap in the projected space. The right plot shows the
corresponding projection based on the Fisher linear discriminant, showing the greatly improved

class separation.
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Appendix: Reduced-Rank LDA

ML estimates, fiy, often called the class centroids and they lie in an
K — 1-dimensional subspace, Hx_; say, of R™.

Now consider an arbitrary point, x*, and let:
® z* := projection of x* onto Hx_1

® y* := projection orthogonal to Hy_;

Then see that ) )
N 2 N
[x* = aglls = lly*ll5 + [12° — fgll;

— this is just Pythagoras Theorem!

Note y* does not discriminate between classes so can ignore it(!) to obtain

* A~ 1 * k(2
= arguuax {log 72— 2 2" — A1I2 )
1<k<K 2

Often K << m so substantial dimension reduction can be achieved.
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Appendix: Reduced-Rank LDA

Can also look for an L-dimensional subspace H;, C Hx_1 for L < K — 1 with Hy,
chosen to maximize between-class variance relative to within-class variance.

Goal is to find dimensions that contribute to dispersion of the p}'s.

Particular procedure is:

1.

o,

First sphere the variables: x} := D '2U T fori=1,...,N.

2. Let M* be the m x K matrix of class centroids, fi],..., fi).
3.
4. Let B* = VDgV' be its eigen decomposition with

Compute the m x m covariance matrix, B*, of the K centroids.

DB = diag(dh...,dK,l,O,...,O) where d1 > dg > 2> dK,1 > 0.
Let v; be I column of V corresponding to eigen value, d;.
Then the I*" discriminant or (canonical) variable for 1 <1< K — 1 is

c = vlTD_1/2 U' x

= v/ x".
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Appendix: Reduced-Rank LDA

These steps can be understood via:

® A principal components analysis (PCA)
® Or by solving a generalized eigen-value problem

- the original approach of Fisher.

Discriminant function can now be written as

g:"lx_llk)}

k* = argmax { log(7x)
1<k<K

l\DM—l

On Slide 55 we plot pairs of canonical variates for the “vowel data” of HTF.

Notice that the lower the coordinates, the more spread out the centroids.
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Figure 4.8 from HTF: Four projections onto pairs of canonical variates. Notice that as the rank
of the canonical variates increases, the centroids become less spread out. In the lower right
panel they appear to be superimposed, and the classes most confused.



Appendix: Classification Using Discriminant Subspaces

Projecting class centroids onto 2- or 3-dimensional discriminant subspaces aids in
visualization.

However, also possible that performing classification in Hy, (instead of Hg_1) for
L < K — 1 might yield a superior classifier. Why?

Figure on Slide 57 plots training and test error against L, the dimension of the
discriminant subspace used for LDA, using the vowel data of Hastie et al.

- K =11 classes and M = 10 variables
- we see that L = 2 yields the best test error.

Figure on Slide 58 shows the corresponding optimal classification regions in Hs.
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LDA and Dimension Reduction on the Yowel Data

g
o
O
o
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o
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S o
8
2 Test Data
° = A - Train Data
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o
< T T T T T
2 4 6 8 10

Dimension

Figure 4.10 from HTF: Training and test error rates for the vowel data, as a function of the
dimension of the discriminant subspace. In this case the best error rate is for dimension 2.

Figure 4.11 shows the decision boundaries in this space.



Classification in Reduced Subspace

Canonical Coordinate 2

Canonical Coordinate 1

Figure 4.11 from HTF: Decision boundaries for the vowel training data, in the two-dimensional
subspace spanned by the first two canonical variates. Note that in any higher-dimensional
subspace, the decision boundaries are higher-dimensional affine planes, and could not be
represented as lines.



Appendix: Adaptive k-Nearest Neighbors

In high-dimensions, nearest neighbors of a given point are typically very far away

- so k-nearest neighbors can perform quite poorly.

e.g. Consider N data-points uniformly distributed in unit cube [—1, 2]7.

Let R be the radius of a 1-NN centered at the origin. Then can be shown that

ll/N 1/p
median(R) = v, /7 1-3

where v,7? is the volume of the sphere of radius r in p dimensions.

Figure 13.12 from HTF shows median(R) as a function of p for various sample
sizes, N

- note that median(R) approaches .5.
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Median Radius

Dimension

Figure 13.12 from HTF: Median radius of a 1-nearest-neighborhood, for uniform data with N

observations in p dimensions.



Appendix: Adaptive k-Nearest Neighbors

Can partly address this problem by allowing metric used at a given point to
depend on the point

- yields adaptive k-nearest-neighbors.

Can motivate adaptive k-NN by considering Figure 13.13 from HTF:
® There are 2 classes and 2 features but clearly one of the features is unrelated
to class.
® See that class probabilities vary only in the z-direction and not in the
y-direction
® So it makes sense to stretch the neighborhood in the y-direction.

Can generalize this insight to apply in higher dimensions by adapting the metric
at each point.

61 (Section 14)



5-Nearest Neighborhoods

Q

Figure 13.13 from HTF: The points are uniform in the cube, with the vertical line separating
class red and green. The vertical strip denotes the 5-nearest-neighbor region using only the
horizontal coordinate to find the nearest-neighbors for the target point (solid dot). The sphere
shows the 5-nearest-neighbor region using both coordinates, and we see in this case it has

extended into the class-red region (and is dominated by the wrong class in this instance).



Appendix: Adaptive k-Nearest Neighbors

The discriminant adaptive nearest neighbor (DANN) rule works as follows:

1. At a query point Xg, form the neighborhood of the n nearest points
- will use these n points to determine the metric used at xo.
2. Using these n points compute:
(i) w= Zle 7, W, the pooled within-class covariance matrix.
(i) B= 25:1 k(X — X)(Xx — X) T, the between-class covariance matrix.
3. Define
> = w2 w2pwl2 o GI} w2, (14)

4. Now classify xg using k-NN with £ < n and the metric

D(x,x0) = (x—x0)' B(x —xp).

HTF suggest using n =50 and € = 1.

Question: What is the geometric interpretation behind (14)7?
Question: Are there any obvious down-sides to DANN?
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Figure 13.14 from HTF: Neighborhoods found by the DANN procedure, at various query points
(centers of the crosses). There are two classes in the data, with one class surrounding the
other. 50 nearest-neighbors were used to estimate the local metrics. Shown are the resulting
metrics used to form 15-nearest-neighborhoods.



Appendix: Adaptive k-Nearest Neighbors

Question: What is the geometric interpretation behind (14)?

Solution: (14) arises naturally from the following steps:

1. First sphere the data using the pooled within-class variance, W, so that
X; — W_1/2x,~ for each point x; in the n-neighborhood of xg.

2. Now note that B* := W~ /2BW~'/2 is the between-class covariance matrix
under these new coordinates.

3. The metric in (14) now reduces to

D(x,xg) = (x—xo) W2 |w12BW~1/2 4 eI} WY2(x — xo)
= (X" —x})" [B* + I (x* —x}). (15)

Intuitively, (15) now makes sense.

e.g. Suppose (x* — x{) ~ ae where e is an eigen vector of B* with small eigen
value. Then (ignoring eI term) we see that (15) will be small so x* more likely to
be included among the k nearest neighbors (and to have same class as xg).

Role of €I is simply to round any infinite strips to ellipses in new coordinates.
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