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A Very Brief Introduction to Stochastic Calculus
There is a probability triple (Ω,F ,P) where

P is the “true” or physical probability measure.

Ω is the universe of possible outcomes.
Use ω ∈ Ω to represent a generic outcome, typically a sample path of a
stochastic process.

F represents the set of possible events where an event is a subset of Ω.

There is also a filtration, {Ft}t≥0, that models the evolution of information
through time

- e.g. if known by time t whether or not event E has occurred, then E ∈ Ft

- if working with a finite horizon, [0,T ], then can take F = FT .

Also say that a stochastic process, Xt , is Ft-adapted if any events that depend
only on {Xs}0≤s≤t are in Ft .
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Martingales and Brownian Motion
Definition: A stochastic process, {Wt : 0 ≤ t ≤ ∞}, is a standard Brownian
motion if:

1. W0 = 0
2. It has continuous sample paths
3. It has independent, stationary increments.
4. Wt ∼ N(0, t).

Definition: An n-dimensional process, Wt = (W (1)
t , . . . ,W (n)

t ), is a standard
n-dimensional Brownian motion if each W (i)

t is a standard Brownian motion and
the W (i)

t ’s are independent of each other.
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Martingales and Brownian Motion
Definition: A stochastic process, {Xt : 0 ≤ t ≤ ∞}, is a martingale with
respect to the filtration, Ft , and probability measure, P, if

1. EP [|Xt |] <∞ for all t ≥ 0
2. EP [Xt+s|Ft ] = Xt for all t, s ≥ 0.

Example: Let Wt be a Brownian motion. Then the following are all martingales:

1. Wt
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2. W 2
t − t



3. exp (θWt − θ2t/2)



Brownian martingales
Mt := exp (θWt − θ2t/2) is an example of an exponential martingale

- of particular significance since they are positive and therefore may be used to
define new probability measures.

Example (Doob or Levy Martingale):
Let Z be a random variable and set Xt := E[Z |Ft ]. Then Xt is a martingale.
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Quadratic Variation
Consider a partition of the time interval, [0,T ] given by

0 = t0 < t1 < t2 < . . . < tn = T .

Let Xt be a stochastic process and consider the sum of squared changes

Qn(T ) :=
n∑

i=1
[∆Xti ]

2

where ∆Xti := Xti −Xti−1 .

Definition: The quadratic variation of a stochastic process, Xt , is equal to the
limit of Qn(T ) as ∆t := maxi(ti − ti−1)→ 0.

The functions with which you are normally familiar, e.g. continuous differentiable
functions, have quadratic variation equal to zero.
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Quadratic Variation
Theorem: The quadratic variation of a Brownian motion is equal to T with
probability 1.
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Total Variation
Definition: The total variation of a process, Xt , on [0,T ] is defined as

Total Variation := lim
∆t→0

n∑
i=1
|Xtk −Xtk−1 |.

Note that any continuous stochastic process or function that has non-zero
quadratic variation must have infinite total variation.

Follows by observing that

n∑
i=1

(Xtk −Xtk−1)2 ≤

( n∑
i=1
|Xtk −Xtk−1 |

)
max

1≤k≤n
|Xtk −Xtk−1 |. (1)

Now let n →∞ in (1) then the continuity of Xt implies the result.

Therefore follows that the total variation of a Brownian motion is infinite.
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Stochastic Integrals
Now write Xt(ω) instead of usual Xt to emphasize that the quantities in question
are stochastic.

Definition: A stopping time of the filtration Ft is a random time, τ , such that
the event {τ ≤ t} ∈ Ft for all t > 0.

Definition: We say a process, ht(ω), is elementary if it is piece-wise constant so
there exists a sequence of stopping times 0 = t0 < t1 < . . . < tn = T and a set
of Fti -measurable functions, ei(ω), such that

ht(ω) =
∑

i
ei(ω)I[ti ,ti+1)(t)

where I[ti ,ti+1)(t) = 1 if t ∈ [ti , ti+1) and 0 otherwise.
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Stochastic Integrals
Definition: The stochastic integral of an elementary function, ht(ω), with
respect to a Brownian motion, Wt , is defined as∫ T

0
ht(ω) dWt(ω) :=

n−1∑
i=0

ei(ω)
(
Wti+1(ω)−Wti (ω)

)
. (2)

Note that our definition of an elementary function assumes that the function,
ht(ω), is evaluated at the left-hand point of the interval in which t falls

- a key component in the definition of the stochastic integral
- without it many later results would no longer hold.
- moreover, defining the stochastic integral in this way makes the resulting

theory suitable for financial applications.

For a more general process, Xt(ω), we have∫ T

0
Xt(ω) dWt(ω) := lim

n→∞

∫ T

0
X (n)

t (ω) dWt(ω)

where X (n)
t is a sequence of elementary processes that “converges” to Xt .
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Computing ∫T
0 Wt dWt

Example: Let 0 = tn
0 < tn

1 < tn
2 < . . . < tn

n = T be a partition of [0,T ] and
define

Xn
t :=

n−1∑
i=0

Wtn
i
I[tn

i ,tn
i+1)(t)

where I[tn
i ,tn

i+1)(t) = 1 if t ∈ [tn
i , tn

i+1) and is 0 otherwise.

Then Xn
t is an adapted elementary process and, by continuity of Brownian

motion, satisfies limn→∞Xn
t = Wt almost surely as maxi |tn

i+1 − tn
i | → 0.
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Computing ∫T
0 Wt dWt

By (2) the stochastic integral of Xn
t is:∫ T

0
Xn

t dWt =
n−1∑
i=0

Wtn
i
(Wtn

i+1
−Wtn

i
)

= 1
2

n−1∑
i=0

(
W 2

tn
i+1
−W 2

tn
i
− (Wtn

i+1
−Wtn

i
)2
)

= 1
2W 2

T −
1
2W 2

0 −
1
2

n−1∑
i=0

(Wtn
i+1
−Wtn

i
)2. (3)

Therefore obtain∫ T

0
Wt dWt = lim

n→∞

∫ T

0
Xn

t dWt = 1
2W 2

T −
1
2T .

We generally evaluate stochastic integrals using Itô’s Lemma.
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Itô’s Isometry
Definition: We define the space L2[0,T ] to be the space of processes, Xt(ω),
such that

E
[∫ T

0
Xt(ω)2 dt

]
<∞.

Theorem: (Itô’s Isometry) For any Xt(ω) ∈ L2[0,T ] we have

E

(∫ T

0
Xt(ω) dWt(ω)

)2
 = E

[∫ T

0
Xt(ω)2 dt

]
.

Proof: (When Xt is an elementary process)

Let Xt =
∑

i ei(ω)I[ti ,ti+1)(t) be an elementary process.

Therefore have
∫ T

0 Xt(ω) dWt(ω) :=
∑n−1

i=0 ei(ω)
(
Wti+1(ω)−Wti (ω)

)
so that:

2



Proof of Itô’s Isometry When Xt is Elementary

E

[(∫ T

0
Xt(ω) dWt(ω)

)2
]

= E

[(
n−1∑
i=0

ei(ω)
(

Wti+1 (ω) − Wti (ω)
))2]

=
n−1∑
i=0

E
[

e2
i (ω)

(
Wti+1 (ω) − Wti (ω)

)2
]

+ 2
n−1∑

0≤i<j≤n−1

E
[
ei(ω) ej(ω)

(
Wti+1 (ω) − Wti (ω)

) (
Wtj+1 (ω) − Wtj (ω)

)]
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Proof of Itô’s Isometry When Xt is Elementary

=
n−1∑
i=0

E

e2
i (ω) Eti

[(
Wti+1 (ω) − Wti (ω)

)2
]

︸ ︷︷ ︸
= ti+1−ti


+ 2

n−1∑
0≤i<j≤n−1

E

ei(ω) ej(ω)
(

Wti+1 (ω) − Wti (ω)
)

Etj

[(
Wtj+1 (ω) − Wtj (ω)

)]︸ ︷︷ ︸
=0


= E

[
n−1∑
i=0

e2
i (ω)(ti+1 − ti)

]

= E
[∫ T

0
Xt(ω)2 dt

]
as required.
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Martingale Property of Stochastic Integrals
Theorem: The stochastic integral, Yt :=

∫ t
0 Xs(ω) dWs(ω), is a martingale for

any Xt(ω) ∈ L2[0,T ].

This theorem is known as the martingale property of stochastic integrals
- a very important result.

Easy to prove when Xt is an elementary process.
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Stochastic Differential Equations
Definition: An n-dimensional Itô process, Xt , is a process that can be
represented as

Xt = X0 +
∫ t

0
as ds +

∫ t

0
bs dWs (4)

where W is an m-dimensional standard Brownian motion, and a and b are
n-dimensional and n ×m-dimensional Ft-adapted processes, respectively.

Often use notation dXt = at dt + bt dWt as shorthand for (4).

An n-dimensional stochastic differential equation (SDE) has the form

dXt = a(Xt , t) dt + b(Xt , t) dWt ; X0 = x. (5)

Once again, (5) is shorthand for

Xt = x +
∫ t

0
a(Xs, s) dt +

∫ t

0
b(Xs, t) dWs. (6)

Conditions exist to guarantee existence and uniqueness of solutions to (6).
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Itô’s Lemma
A useful tool for solving SDE’s is Itô’s Lemma, probably the most important
result in stochastic calculus!

Theorem: (Itô’s Lemma for 1-dimensional Brownian Motion)
Let Wt be a Brownian motion on [0,T ] and suppose f (x) is a twice continuously
differentiable function on R.

Then for any t ≤ T we have

f (Wt) = f (0) + 1
2

∫ t

0
f ′′(Ws) ds +

∫ t

0
f ′(Ws) dWs. (7)

3



Sketch Proof of Itô’s Lemma
Proof Let 0 = t0 < t1 < t2 < . . . < tn = t be a partition of [0, t]. Then

f (Wt) = f (0) +
n−1∑
i=0

(
f (Wti+1)− f (Wti )

)
. (8)

Taylor’s Theorem implies

f (Wti+1)− f (Wti ) = f ′(Wti )(Wti+1 −Wti ) + 1
2 f ′′(θi)(Wti+1 −Wti )2 (9)

for some θi ∈ (Wti ,Wti+1).

Substituting (9) into (8) obtain

f (Wt) = f (0) +
n−1∑
i=0

f ′(Wti )(Wti+1−Wti ) + 1
2

n−1∑
i=0

f ′′(θi)(Wti+1−Wti )2. (10)

If δ := maxi |ti+1 − ti | → 0 then can be shown that terms on rhs of (10)
converge to corresponding terms on rhs of (7) as desired

- not surprising since quadratic variation of Brownian motion on [0, t] = t. 2
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Itô’s Lemma
A more general version of Itô’s Lemma can be stated for Itô processes.

Theorem. (Itô’s Lemma for 1-dimensional Itô process)
Let Xt be a 1-dimensional Itô process satisfying the SDE

dXt = µt dt + σt dWt .

If f (t, x) : [0,∞)× R→ R is a C 1,2 function and Zt := f (t,Xt) then

dZt = ∂f
∂t (t,Xt) dt + ∂f

∂x (t,Xt) dXt + 1
2
∂2f
∂x2 (t,Xt) (dXt)2

=
(
∂f
∂t (t,Xt) + ∂f

∂x (t,Xt) µt + 1
2
∂2f
∂x2 (t,Xt) σ2

t

)
dt + ∂f

∂x (t,Xt) σt dWt .
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The “Box” Calculus
In statement of Itô’s Lemma, implicitly assumed that (dXt)2 = σ2

t dt.

The “box calculus” is a series of simple rules for calculating such quantities:

dt × dt = dt × dWt = 0 and
dWt × dWt = dt

When we have two correlated Brownian motions, W (1)
t and W (2)

t , with
correlation coefficient, ρ, then we easily obtain that dW (1)

t × dW (2)
t = ρ dt.
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Geometric Brownian Motion
Example: Suppose a stock price, St , satisfies the SDE

dSt = µtSt dt + σtSt dWt .

Then can use substitution, Yt = log(St) and Itô’s Lemma applied to the function
f (x) := log(x) to obtain

St = S0 exp
(∫ t

0
(µs − σ2

s/2) ds +
∫ t

0
σs dWs

)
. (11)
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Geometric Brownian Motion
Note St does not appear on rhs of (11) so that we have indeed solved the SDE.

When µs = µ and σs = σ we obtain

St = S0 exp
(
(µ− σ2/2) t + σWt

)
(12)

so that log(St) ∼ N ((µ− σ2/2)t, σ2t).

In this case we say St is a geometric Brownian motion (GBM).
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The Ornstein-Uhlenbeck Process
Example: Let St be a security price and suppose Xt = log(St) satisfies the SDE

dXt = [−γ(Xt − µt) + µ] dt + σdWt .

We would like to solve this SDE.

So first recall Itô’s Lemma: If Zt := f (t,Xt) where dXt = µt dt + σt dWt then

dZt =
(
∂f
∂t (t,Xt) + ∂f

∂x (t,Xt) µt + 1
2
∂2f
∂x2 (t,Xt) σ2

t

)
dt + ∂f

∂x (t,Xt) σt dWt .

So let’s apply Itô’s Lemma to Zt := eγt Xt :
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The Ornstein-Uhlenbeck Process
We obtain

dZt =
(
γeγtXt + eγt [−γ(Xt − µt) + µ]

)
dt + eγtσ dWt

= µeγt (γt + 1) dt + eγtσ dWt

so that
Zt = Z0 + µ

∫ t

0
eγs (γs + 1) ds + σ

∫ t

0
eγs dWs

After simplifying we have:

Xt = X0e−γt + µt + σe−γt
∫ t

0
eγs dWs. (13)

Note that Xt does not appear on rhs of (13) so that we have solved the SDE!
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The Ornstein-Uhlenbeck Process
We also obtain:

E[Xt ] = X0e−γt + µt

and

Var(Xt) = Var
(
σe−γt

∫ t

0
eγs dWs

)
= σ2e−2γt E

[(∫ t

0
eγs dWs

)2]

= σ2e−2γt
∫ t

0
e2γs ds

= σ2

2γ
(
1− e−2γt) .

Question: What is the distribution of ST?
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