Foundations of Financial Engineering A Very Brief Introduction to Stochastic Calculus

Martin B. Haugh

Department of Industrial Engineering and Operations Research Columbia University

A Very Brief Introduction to Stochastic Calculus

There is a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ where

stochastic process.

- ullet I is the "true" or *physical* probability measure.
- Ω is the universe of possible outcomes. Use $\omega \in \Omega$ to represent a generic outcome, typically a sample path of a
- \mathcal{F} represents the set of possible *events* where an event is a subset of Ω .

There is also a filtration, $\{\mathcal{F}_t\}_{t\geq 0}$, that models the evolution of information through time

- e.g. if known by time t whether or not event E has occurred, then $E \in \mathcal{F}_t$
- if working with a finite horizon, [0, T], then can take $\mathcal{F} = \mathcal{F}_T$.

Also say that a stochastic process, X_t , is \mathcal{F}_t -adapted if any events that depend only on $\{X_s\}_{0 \le s \le t}$ are in \mathcal{F}_t .

Martingales and Brownian Motion

Definition: A stochastic process, $\{W_t: 0 \le t \le \infty\}$, is a standard Brownian motion if:

- 1. $W_0 = 0$
- 2. It has continuous sample paths
- 3. It has independent, stationary increments.
- 4. $W_t \sim N(0, t)$.

Definition: An n-dimensional process, $W_t = (W_t^{(1)}, \dots, W_t^{(n)})$, is a standard n-dimensional Brownian motion if each $W_t^{(i)}$ is a standard Brownian motion and the $W_t^{(i)}$'s are independent of each other.

Martingales and Brownian Motion

Definition: A stochastic process, $\{X_t : 0 \le t \le \infty\}$, is a martingale with respect to the filtration, \mathcal{F}_t , and probability measure, P, if

- 1. $\mathsf{E}^P[|X_t|] < \infty$ for all $t \ge 0$
- 2. $\mathsf{E}^P[X_{t+s}|\mathcal{F}_t] = X_t$ for all $t, s \ge 0$.

Example: Let W_t be a Brownian motion. Then the following are all martingales:

1. W_t

3. $\exp(\theta W_t - \theta^2 t/2)$

Brownian martingales

 $M_t := \exp{(\theta \, W_t - \theta^2 t/2)}$ is an example of an exponential martingale

- of particular significance since they are positive and therefore may be used to define new probability measures.

Example (Doob or Levy Martingale):

Let Z be a random variable and set $X_t := \mathsf{E}[Z|\mathcal{F}_t].$ Then X_t is a martingale.

Quadratic Variation

Consider a partition of the time interval, [0, T] given by

$$0 = t_0 < t_1 < t_2 < \ldots < t_n = T.$$

Let X_t be a stochastic process and consider the sum of squared changes

$$Q_n(T) := \sum_{i=1}^n \left[\Delta X_{t_i} \right]^2$$

where $\Delta X_{t_i} := X_{t_i} - X_{t_{i-1}}$.

Definition: The quadratic variation of a stochastic process, X_t , is equal to the limit of $Q_n(T)$ as $\Delta t := \max_i (t_i - t_{i-1}) \to 0$.

The functions with which you are normally familiar, e.g. continuous differentiable functions, have quadratic variation equal to zero.

Quadratic Variation

Theorem: The quadratic variation of a Brownian motion is equal to T with probability 1.

Total Variation

Definition: The total variation of a process, X_t , on [0, T] is defined as

Total Variation
$$:= \lim_{\Delta t \to 0} \sum_{i=1}^n |X_{t_k} - X_{t_{k-1}}|.$$

Note that any continuous stochastic process or function that has non-zero quadratic variation must have infinite total variation.

Follows by observing that

$$\sum_{i=1}^{n} (X_{t_k} - X_{t_{k-1}})^2 \le \left(\sum_{i=1}^{n} |X_{t_k} - X_{t_{k-1}}| \right) \max_{1 \le k \le n} |X_{t_k} - X_{t_{k-1}}|. \tag{1}$$

Now let $n \to \infty$ in (1) then the continuity of X_t implies the result.

Therefore follows that the total variation of a Brownian motion is infinite.

Foundations of Financial Engineering Stochastic Integrals

Martin B. Haugh

Department of Industrial Engineering and Operations Research Columbia University

Stochastic Integrals

Now write $X_t(\omega)$ instead of usual X_t to emphasize that the quantities in question are stochastic.

Definition: A stopping time of the filtration \mathcal{F}_t is a random time, τ , such that the event $\{\tau \leq t\} \in \mathcal{F}_t$ for all t > 0.

Definition: We say a process, $h_t(\omega)$, is elementary if it is piece-wise constant so there exists a sequence of stopping times $0=t_0< t_1<\ldots< t_n=T$ and a set of \mathcal{F}_{t_i} -measurable functions, $e_i(\omega)$, such that

$$h_t(\omega) = \sum_i e_i(\omega) I_{[t_i, t_{i+1})}(t)$$

where $I_{[t_i,t_{i+1})}(t)=1$ if $t\in [t_i,t_{i+1})$ and 0 otherwise.

Stochastic Integrals

Definition: The stochastic integral of an elementary function, $h_t(\omega)$, with respect to a Brownian motion, W_t , is defined as

$$\int_0^T h_t(\omega) \ dW_t(\omega) := \sum_{i=0}^{n-1} e_i(\omega) \left(W_{t_{i+1}}(\omega) - W_{t_i}(\omega) \right). \tag{2}$$

Note that our definition of an elementary function assumes that the function, $h_t(\omega)$, is evaluated at the left-hand point of the interval in which t falls

- a key component in the definition of the stochastic integral
- without it many later results would no longer hold.
- moreover, defining the stochastic integral in this way makes the resulting theory suitable for financial applications.

For a more general process, $X_t(\omega)$, we have

$$\int_0^T X_t(\omega) \ dW_t(\omega) := \lim_{n \to \infty} \int_0^T X_t^{(n)}(\omega) \ dW_t(\omega)$$

where $X_t^{(n)}$ is a sequence of elementary processes that "converges" to X_t .

Computing $\int_0^T W_t \ dW_t$

Example: Let $0 = t_0^n < t_1^n < t_2^n < \ldots < t_n^n = T$ be a partition of [0,T] and define

$$X_t^n := \sum_{i=0}^{n-1} W_{t_i^n} I_{[t_i^n, t_{i+1}^n)}(t)$$

where $I_{[t_i^n,t_{i+1}^n)}(t)=1$ if $t\in[t_i^n,t_{i+1}^n)$ and is 0 otherwise.

Then X^n_t is an adapted elementary process and, by continuity of Brownian motion, satisfies $\lim_{n\to\infty}X^n_t=W_t$ almost surely as $\max_i|t^n_{i+1}-t^n_i|\to 0$.

Computing $\int_0^T W_t \ dW_t$

By (2) the stochastic integral of X_t^n is:

$$\int_{0}^{T} X_{t}^{n} dW_{t} = \sum_{i=0}^{n-1} W_{t_{i}^{n}} (W_{t_{i+1}^{n}} - W_{t_{i}^{n}})$$

$$= \frac{1}{2} \sum_{i=0}^{n-1} \left(W_{t_{i+1}^{n}}^{2} - W_{t_{i}^{n}}^{2} - (W_{t_{i+1}^{n}} - W_{t_{i}^{n}})^{2} \right)$$

$$= \frac{1}{2} W_{T}^{2} - \frac{1}{2} W_{0}^{2} - \frac{1}{2} \sum_{i=0}^{n-1} (W_{t_{i+1}^{n}} - W_{t_{i}^{n}})^{2}.$$

Therefore obtain

$$\int_0^T W_t \ dW_t = \lim_{n \to \infty} \int_0^T X_t^n \ dW_t = \frac{1}{2} W_T^2 - \frac{1}{2} T.$$

We generally evaluate stochastic integrals using Itô's Lemma.

5

(3)

Foundations of Financial Engineering

Itô's Isometry and the Martingale Property of Stochastic Integrals

Martin B. Haugh

Department of Industrial Engineering and Operations Research
Columbia University

Itô's Isometry

Definition: We define the space $L^2[0,T]$ to be the space of processes, $X_t(\omega)$, such that

$$\mathsf{E}\left[\int_0^T X_t(\omega)^2 \ dt\right] < \infty.$$

Theorem: (Itô's Isometry) For any $X_t(\omega) \in L^2[0, T]$ we have

$$\mathsf{E}\left[\left(\int_0^T X_t(\omega) \ dW_t(\omega)\right)^2\right] \ = \ \mathsf{E}\left[\int_0^T X_t(\omega)^2 \ dt\right].$$

Proof: (When X_t is an elementary process)

Let $X_t = \sum_i e_i(\omega) I_{[t_i,t_{i+1})}(t)$ be an elementary process.

Therefore have $\int_0^T X_t(\omega) \ dW_t(\omega) := \sum_{i=0}^{n-1} e_i(\omega) \left(W_{t_{i+1}}(\omega) - W_{t_i}(\omega)\right)$ so that:

Proof of Itô's Isometry When X_t is Elementary

$$\mathsf{E}\left[\left(\int_{0}^{T} X_{t}(\omega) \ dW_{t}(\omega)\right)^{2}\right] = \mathsf{E}\left[\left(\sum_{i=0}^{n-1} e_{i}(\omega) \left(W_{t_{i+1}}(\omega) - W_{t_{i}}(\omega)\right)\right)^{2}\right]$$

$$= \sum_{i=0}^{n-1} \mathsf{E}\left[e_{i}^{2}(\omega) \left(W_{t_{i+1}}(\omega) - W_{t_{i}}(\omega)\right)^{2}\right]$$

$$+ 2 \sum_{i=0}^{n-1} \mathsf{E}\left[e_{i}(\omega) \ e_{j}(\omega) \left(W_{t_{i+1}}(\omega) - W_{t_{i}}(\omega)\right) \left(W_{t_{j+1}}(\omega) - W_{t_{j}}(\omega)\right)\right]$$

Proof of Itô's Isometry When X_t is Elementary

$$= \sum_{i=0}^{n-1} \mathsf{E} \left[e_i^2(\omega) \underbrace{\mathsf{E}_{t_i} \left[\left(W_{t_{i+1}}(\omega) - W_{t_i}(\omega) \right)^2 \right]}_{= t_{i+1} - t_i} \right]$$

$$+ 2 \sum_{0 \le i < j \le n-1}^{n-1} \mathsf{E} \left[e_i(\omega) e_j(\omega) \left(W_{t_{i+1}}(\omega) - W_{t_i}(\omega) \right) \underbrace{\mathsf{E}_{t_j} \left[\left(W_{t_{j+1}}(\omega) - W_{t_j}(\omega) \right) \right]}_{=0} \right]$$

$$= \mathsf{E} \left[\sum_{i=0}^{n-1} e_i^2(\omega) (t_{i+1} - t_i) \right]$$

$$= \mathsf{E} \left[\int_0^T X_t(\omega)^2 dt \right]$$

as required.

Martingale Property of Stochastic Integrals

Theorem: The stochastic integral, $Y_t := \int_0^t X_s(\omega) \ dW_s(\omega)$, is a martingale for any $X_t(\omega) \in L^2[0,T]$.

This theorem is known as the martingale property of stochastic integrals

- a very important result.

Easy to prove when X_t is an elementary process.

Foundations of Financial Engineering Stochastic Differential Equations and Itô's Lemma

Martin B. Haugh

Department of Industrial Engineering and Operations Research
Columbia University

Stochastic Differential Equations

Definition: An n-dimensional Itô process, X_t , is a process that can be represented as

$$X_t = X_0 + \int_0^t a_s \ ds + \int_0^t b_s \ dW_s$$

where W is an m-dimensional standard Brownian motion, and a and b are n-dimensional and $n \times m$ -dimensional \mathcal{F}_t -adapted processes, respectively.

Often use notation $dX_t = a_t dt + b_t dW_t$ as shorthand for (4).

An
$$n$$
-dimensional stochastic differential equation (SDE) has the form

 $dX_t = a(X_t, t) dt + b(X_t, t) dW_t; X_0 = x.$

Once again, (5) is shorthand for

 $X_t = x + \int_0^t a(X_s, s) dt + \int_0^t b(X_s, t) dW_s.$

Conditions exist to guarantee existence and uniqueness of solutions to (6).

(4)

(5)

(6)

Itô's Lemma

A useful tool for solving SDE's is Itô's Lemma, probably the most important result in stochastic calculus!

Theorem: (Itô's Lemma for 1-dimensional Brownian Motion)

Let W_t be a Brownian motion on [0, T] and suppose f(x) is a twice continuously differentiable function on \mathbf{R} .

Then for any $t \leq T$ we have

$$f(W_t) = f(0) + \frac{1}{2} \int_0^t f''(W_s) ds + \int_0^t f'(W_s) dW_s.$$
 (7)

Sketch Proof of Itô's Lemma

Proof Let $0 = t_0 < t_1 < t_2 < \ldots < t_n = t$ be a partition of [0, t]. Then

$$f(W_t) = f(0) + \sum_{i=1}^{n-1} (f(W_{t_{i+1}}) - f(W_{t_i})).$$

Taylor's Theorem implies

$$f(W_{t_{i+1}}) - f(W_{t_i}) = f'(W_{t_i})(W_{t_{i+1}} - W_{t_i}) + \frac{1}{2}f''(\theta_i)(W_{t_{i+1}} - W_{t_i})^2$$
 (9) for some $\theta_i \in (W_{t_i}, W_{t_{i+1}})$.

Substituting (9) into (8) obtain

$$f(W_t) = f(0) + \sum_{i=0}^{n-1} f'(W_{t_i})(W_{t_{i+1}} - W_{t_i}) + \frac{1}{2} \sum_{i=0}^{n-1} f''(\theta_i)(W_{t_{i+1}} - W_{t_i})^2.$$
 (10)

If $\delta := \max_i |t_{i+1} - t_i| \to 0$ then can be shown that terms on rhs of (10)

converge to corresponding terms on rhs of (7) as desired - not surprising since quadratic variation of Brownian motion on [0,t]=t. \square

(8)

Itô's Lemma

A more general version of Itô's Lemma can be stated for Itô processes.

Theorem. (Itô's Lemma for 1-dimensional Itô process)

Let X_t be a 1-dimensional Itô process satisfying the SDE

$$dX_t = \mu_t dt + \sigma_t dW_t.$$

If
$$f(t,x):[0,\infty)\times R\to R$$
 is a $C^{1,2}$ function and $Z_t:=f(t,X_t)$ then

$$dZ_{t} = \frac{\partial f}{\partial t}(t, X_{t}) dt + \frac{\partial f}{\partial x}(t, X_{t}) dX_{t} + \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(t, X_{t}) (dX_{t})^{2}$$

$$= \left(\frac{\partial f}{\partial t}(t, X_{t}) + \frac{\partial f}{\partial x}(t, X_{t}) \mu_{t} + \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(t, X_{t}) \sigma_{t}^{2}\right) dt + \frac{\partial f}{\partial x}(t, X_{t}) \sigma_{t} dW_{t}.$$

The "Box" Calculus

In statement of Itô's Lemma, implicitly assumed that $(dX_t)^2 = \sigma_t^2 \ dt.$

The "box calculus" is a series of simple rules for calculating such quantities:

$$\begin{array}{rcl} dt \times dt \ = \ dt \times dW_t \ = \ 0 \quad \text{and} \\ dW_t \times dW_t \ = \ dt \end{array}$$

When we have two correlated Brownian motions, $W_t^{(1)}$ and $W_t^{(2)}$, with correlation coefficient, ρ , then we easily obtain that $dW_t^{(1)} \times dW_t^{(2)} = \rho \ dt$.

Foundations of Financial Engineering Some Examples of Itô's Lemma in Action

Martin B. Haugh

Department of Industrial Engineering and Operations Research
Columbia University

Geometric Brownian Motion

Example: Suppose a stock price, S_t , satisfies the SDE

$$dS_t = \mu_t S_t dt + \sigma_t S_t dW_t.$$

Then can use substitution, $Y_t = \log(S_t)$ and Itô's Lemma applied to the function $f(x) := \log(x)$ to obtain

$$S_t = S_0 \exp\left(\int_0^t (\mu_s - \sigma_s^2/2) \ ds + \int_0^t \sigma_s \ dW_s\right).$$
 (11)

Geometric Brownian Motion

Note S_t does not appear on rhs of (11) so that we have indeed solved the SDE.

When $\mu_s = \mu$ and $\sigma_s = \sigma$ we obtain

$$S_t = S_0 \exp\left((\mu - \sigma^2/2) t + \sigma W_t\right) \tag{12}$$

so that $\log(S_t) \sim \mathsf{N}\left((\mu - \sigma^2/2)t, \ \sigma^2 t\right)$.

In this case we say S_t is a geometric Brownian motion (GBM).

The Ornstein-Uhlenbeck Process

Example: Let S_t be a security price and suppose $X_t = \log(S_t)$ satisfies the SDE

$$dX_t = \left[-\gamma (X_t - \mu t) + \mu \right] dt + \sigma dW_t.$$

We would like to solve this SDE.

So first recall Itô's Lemma: If $Z_t := f(t, X_t)$ where $dX_t = \mu_t \ dt + \sigma_t \ dW_t$ then

$$dZ_t = \left(\frac{\partial f}{\partial t}(t, X_t) + \frac{\partial f}{\partial x}(t, X_t) \mu_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t, X_t) \sigma_t^2\right) dt + \frac{\partial f}{\partial x}(t, X_t) \sigma_t dW_t.$$

So let's apply Itô's Lemma to $Z_t := e^{\gamma t} X_t$:

The Ornstein-Uhlenbeck Process

We obtain

$$dZ_t = \left(\gamma e^{\gamma t} X_t + e^{\gamma t} [-\gamma (X_t - \mu t) + \mu]\right) dt + e^{\gamma t} \sigma dW_t$$

= $\mu e^{\gamma t} (\gamma t + 1) dt + e^{\gamma t} \sigma dW_t$

so that

$$Z_t = Z_0 + \mu \int_0^t e^{\gamma s} (\gamma s + 1) ds + \sigma \int_0^t e^{\gamma s} dW_s$$

After simplifying we have:

$$X_t = X_0 e^{-\gamma t} + \mu t + \sigma e^{-\gamma t} \int_0^t e^{\gamma s} dW_s.$$
 (13)

Note that X_t does not appear on rhs of (13) so that we have solved the SDE!

The Ornstein-Uhlenbeck Process

We also obtain:

$$\mathsf{E}[X_t] = X_0 e^{-\gamma t} + \mu t$$

and

$$\begin{split} \mathsf{Var}(X_t) &= \mathsf{Var}\left(\sigma e^{-\gamma t} \int_0^t e^{\gamma s} \; dW_s\right) \\ &= \sigma^2 e^{-2\gamma t} \; \mathsf{E}\left[\left(\int_0^t e^{\gamma s} \; dW_s\right)^2\right] \\ &= \sigma^2 e^{-2\gamma t} \; \int_0^t e^{2\gamma s} \; ds \\ &= \frac{\sigma^2}{2\gamma} \; \left(1 - e^{-2\gamma t}\right). \end{split}$$

Question: What is the distribution of S_T ?