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Incentive Problems in Corporate Finance
Recall Merton’s structural lattice model of firm default:

V0 = 1, 000, µ = 15% and σ = 25%.
T = 7 years # of time periods = 7.
r = 5%
Face value of debt = 800 and coupon = 0.

Firm Price Lattice
6940.6

5262.6 3990.2
3990.2 3025.5 2294.0

3025.5 2294.0 1739.4 1318.9
2294.0 1739.4 1318.9 1000.0 758.2*

1739.4 1318.9 1000.0 758.2 574.9 435.9*
1318.9 1000.0 758.2 574.9 435.9 330.5 250.6*

1000.0 758.2 574.9 435.9 330.5 250.6 190.0 144.1*

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Equity and debt values are 499.7 and 500.3, respectively:
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Equity Lattice
6140.6

4501.6 3190.2
3266.4 2264.5 1494.0

2336.9 1570.2 978.4 518.9
1640.8 1054.7 603.6 258.0 0.0

1127.8 687.1 358.4 128.3 0.0 0.0
758.6 435.7 207.1 63.8 0.0 0.0 0.0

499.7 269.9 117.4 31.7 0.0 0.0 0.0 0.0

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Debt Lattice
800.0

761.0 800.0
723.9 761.0 800.0

688.6 723.9 761.0 800.0
653.2 684.7 715.3 742.0 758.2*

611.6 631.7 641.6 630.0 574.9 435.9*
560.3 564.3 551.1 511.1 435.9 330.5 250.6*

500.3 488.3 457.5 404.2 330.5 250.6 190.0 144.1*

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
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Turning Down Good Investments
Suppose the firm is offered a great(!) investment opportunity:

Fair value of investment is X = 100 but cost to firm will only be 90.

But firm has no cash available and would therefore have to raise the 90 from
current equity holders.

Question: Will the equity holders invest?
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Turning Down Good Investments
Can model this situation by first adding X to the initial value of the firm and
computing the resulting firm-value lattice:

Firm Value Lattice
7634.7

5788.8 4389.3
4389.3 3328.1 2523.4

3328.1 2523.4 1913.3 1450.7
2523.4 1913.3 1450.7 1100.0 834.1

1913.3 1450.7 1100.0 834.1 632.4 479.5*
1450.7 1100.0 834.1 632.4 479.5 363.6 275.7*

1100.0 834.1 632.4 479.5 363.6 275.7 209.0 158.5*

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
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Turning Down Good Investments
Can then compute the equity lattice in the usual manner:

Equity Lattice
6834.7

5027.8 3589.3
3665.4 2567.1 1723.4

2639.5 1799.6 1152.4 650.7
1868.4 1224.8 726.9 339.0 34.1

1296.5 809.4 441.4 176.2 16.9 0.0
881.1 520.9 261.0 91.5 8.4 0.0 0.0

586.9 327.7 151.3 47.4 4.2 0.0 0.0 0.0

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Note that equity value is now 586.9
- an increase of 586.9− 499.7 = 87.2 dollars
- but less than the 90 required to make the investment.

Question: What has happened?
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Taking on Bad Investments
Other incentive problems can arise:

Suppose fair value of investment is again 100 but now it costs 110.

Clearly this is a bad investment and should not be made.

But for the equity-holders it may actually be rational to invest if the investment
increases the volatility of the firm

- recall equity-holders own a call option on the value of the firm
- and the value of an option increases with volatility.

So possible that increase in equity value due to the increase in volatility will
exceed the decrease in equity value due to poor quality of investment

- then it makes sense for equity holders (who control the firm) to invest.

Question: How might you model this situation using Merton’s structural model?
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Collateralized Debt Obligations (CDO’s)
Want to find the expected losses in a simple 1-period CDO with the following
characteristics:

The maturity is 1 year.
There are N = 125 bonds in the reference portfolio.
Each bond pays a coupon of one unit after 1 year if it has not defaulted.
The recovery rate on each defaulted bond is zero.
There are 3 tranches of interest:

1. The equity tranche with attachment points: 0-3 defaults

2. The mezzanine tranche with attachment points: 4-6 defaults

3. The senior tranche with attachment points: 7-125 defaults.

Assume probability, q, of defaulting within 1 year is identical across all bonds.
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Collateralized Debt Obligations (CDO’s)
Xi is the normalized asset value of the ith credit and we assume

Xi = √ρM +
√

1− ρZi (1)

where M ,Z1, . . . ,ZN are IID normal random variables
- note correlation between each pair of asset values is identical.

We assume also that ith credit defaults if Xi ≤ x̄i .

Since probability, q, of default is identical across all bonds must therefore have

x̄1 = · · · x̄N = Φ−1(q). (2)

It now follows from (1) and (2) that

P(i defaults |M ) = P(Xi ≤ x̄i |M )
= P(√ρM +

√
1− ρZi ≤ Φ−1(q) |M )

= P
(

Zi ≤
Φ−1(q)−√ρM
√

1− ρ

∣∣∣∣ M
)
.
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Collateralized Debt Obligations (CDO’s)
Therefore conditional on M , the total number of defaults is Bin(N , qM ) where

qM := Φ
(Φ−1(q)−√ρM

√
1− ρ

)
.

That is,
p(k |M ) =

(
N
k

)
qk

M (1− qM )N−k .

Unconditional probabilities computed by numerically integrating the binomial
probabilities with respect to M so that

P(k defaults) =
∫ ∞
−∞

p(k |M )φ(M ) dM .

Can now compute expected (risk-neutral) loss on each of the three tranches:
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Collateralized Debt Obligations (CDO’s)

EQ
0 [Equity tranche loss] = 3× P(3 or more defaults) +

2∑
k=1

k P(k defaults)

EQ
0 [Mezz tranche loss] = 3× P(6 or more defaults) +

2∑
k=1

k P(k + 3 defaults)

EQ
0 [Senior tranche loss] =

119∑
k=1

k P(k + 6 defaults).
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Collateralized Debt Obligations (CDO’s)
Regardless of the individual default probability, q, and correlation, ρ, we have:

EQ
0 [% Equity tranche loss] ≥ EQ

0 [% Mezz tranche loss] ≥ EQ
0 [% Senior tranche loss] .

Also note that expected equity tranche loss always decreasing in ρ.

Expected mezzanine tranche loss often relatively insensitive to ρ.

Expected senior tranche loss (with upper attachment point of 100%) always
increasing in ρ.
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Expected Tranche Losses As a Function of ρ



Collateralized Debt Obligations (CDO’s)
Question: How does the total expected loss in the portfolio vary with ρ?

The dependence structure we used in (1) to link the default events of the various
bonds is the famous Gaussian-copula model.

In practice CDO’s are multi-period securities and can be cash or synthetic CDO’s.
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Introduction to Mortgage-Backed Securities
Consider a standard level-payment mortgage with initial principal M0 := M .

In each of n periods a payment of size B dollars is made
- after n periods all principal and interest will have been paid
- each payment, B, therefore pays both interest and some of the principal
- such a mortgage is said to be fully amortizing.

If we assume the coupon rate is c per period then can solve for B as follows.

Let Mk denote principal remaining after the kth period. Then Mn = 0 and

Mk = (1 + c)Mk−1 − B for k = 1, 2, . . . ,n. (3)

Can iterate (3) to obtain

Mk = (1 + c)kM0 − B
k−1∑
p=0

(1 + c)p

= (1 + c)kM0 − B
[

(1 + c)k − 1
c

]
. (4)
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Introduction to Mortgage-Backed Securities
But Mn = 0 and so

B = c(1 + c)nM0

(1 + c)n − 1 . (5)

Can now substitute (5) back into (4) and obtain

Mk = M0
(1 + c)n − (1 + c)k

(1 + c)n − 1 .
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Introduction to Mortgage-Backed Securities
Assume a deterministic world with no possibility of defaults or prepayments.
If r = risk-free interest rate per period, then fair mortgage value is

F0 =
n∑

k=1

B
(1 + r)k

= c(1 + c)n

(1 + c)n − 1 ×
(1 + r)n − 1

r(1 + r)n M0. (6)

If r = c then (6) immediately implies F0 = M0, as expected.

But in general have r < c to account for possibility of default, prepayment,
servicing fees, bank profits etc.
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Scheduled Principal and Interest Payments
We know Mk−1 so can compute the interest:

Ik := cMk−1 (7)

that would be due in the next period, i.e. period k.

Also means can interpret the kth payment as paying

Pk : = B − cMk−1 (8)

of the remaining principal, Mk−1.

In any time period, k, can therefore easily break down the payment B into a
scheduled principal payment, Pk , and a scheduled interest payment, Ik .

Can take a large pool of these mortgages and use this observation to construct
interest-only (IO) and principal-only (PO) mortgage-backed securities (MBS).

There are many other classes of MBS including for example sequential CMO’s
(collateralized mortgage obligations), PAC CMO’s etc.
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Prepayment Risk
In practice there is in fact uncertainty in interest and principal payments.

Due to possible default by mortgage holders and possibility of prepayments
- prepayments are payments in excess of scheduled principal payments.

Many mortgages in the US allow prepayment and there are many possible reasons
for doing so including default, better refinancing rates, moving home etc.

Prepayment modeling therefore an important feature of pricing residential MBS
- indeed the value of some MBS’s very dependent on prepayment behavior.
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Prepayment Risk
Question: What do you think happens to the value of a PO MBS (relative to a
regular fixed income security) when interest rates (i) increase (ii) decrease?

Question: What do you think happens to the value of an IO MBS (relative to a
regular fixed income security) when interest rates (i) increase (ii) decrease?
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Factor Sensitivity Measures or the “Greeks”
A factor sensitivity measure gives the change in value of a portfolio for a given
change in the “risk factors”.

e.g. Greeks for an option portfolio or duration / convexity of a bond portfolio
- often used to set position limits on trading desks and portfolios.

Consider an option that is written on an underlying security with price process St .
Assume option price, C , is a function of only St and implied volatility, σt .

Then Taylor’s Theorem yields

C (S + ∆S , σ + ∆σ) ≈ C (S , σ) + ∆S ∂C
∂S + 1

2 (∆S)2 ∂
2C
∂S2 + ∆σ∂C

∂σ

= C (S , σ) + ∆S δ + 1
2 (∆S)2 Γ + ∆σ vega.

– have omitted dependence of various quantities on t. Therefore obtain

P&L ≈ δ∆S + Γ
2 (∆S)2 + vega ∆σ

= delta P&L + gamma P&L + vega P&L . (9)
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Factor Sensitivity Measures or the “Greeks”
When ∆σ = 0, obtain obtain the well-known delta-gamma approximation

- often used in historical Value-at-Risk (VaR) calculations.

Can also write (9)

P&L ≈ δS
(

∆S
S

)
+ ΓS2

2

(
∆S
S

)2
+ vega ∆σ

= ESP× Return + $ Gamma× Return2 + vega ∆σ (10)

where ESP denotes the equivalent stock position or “dollar” delta.

Easy to extend this calculation to a portfolio of derivatives.
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Factor Sensitivity Measures or the “Greeks”
Important to note that approximations such as (10) are local approximations

- they are based (via Taylor’s Theorem) on “small” moves in the risk factors.

These approximations can and indeed do break down in violent markets where
changes in the risk factors can be very large.
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Scenario Analysis
The scenario approach to risk management defines a number of scenarios where
in each scenario the various risk factors are assumed to have moved by some
fixed amounts.

e.g. A scenario might assume all stock prices have fallen by 10% and all implied
volatilities have increased by 5 percentage points.

Another scenario might assume the same movements but with an additional
steepening of the volatility surface.

A scenario for a credit portfolio might assume all credit spreads have increased by
some fixed absolute amount, e.g. 100 basis points, or some fixed relative amount,
e.g. 10%.

The risk of a portfolio could then be defined as the maximum loss over all of the
scenarios that were considered.

A particular advantage of the scenario approach is that it does not depend on
probability distributions that are difficult to estimate.
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P&L for an options portfolio on the S&P 500 under stresses to underlying
and implied volatility.

Can use approximations like (10) to check for internal consistency.



Scenario Analysis
While scenario tables are a valuable source of information there are many
potential pit-falls associated with using them. These include:

1. Identifying the relevant risk factors.
2. Identifying “reasonable” shifts for these risk factors.
3. Estimating just how likely each scenario is.

Key role of any risk manager then is to understand what scenarios are plausible
and what scenarios are not.

e.g. In a crisis would expect any drop in price of underlying security to be
accompanied by a rise in implied volatilities.
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Loss Distributions
Many risk measures such as value-at-risk (VaR) are based on the loss
distribution.

Working with loss distributions makes sense as it contains all relevant
information.

A loss distribution implicitly reflects the benefits of netting and diversification.

Moreover, easy to compare loss distribution of a derivatives portfolio with that of
a bond or credit portfolio

- at least when same time horizon is under consideration.

But it may be very difficult to estimate the loss distribution!

Consider the series Xt of risk factor changes and assume they form a stationary
time series with stationary distribution FX.

Let Ft denote all information available in the market at time t, including
{Xs : s ≤ t}.
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Loss Distributions
Definition: The unconditional loss distribution is the distribution of Lt+1 given
the time t composition of the portfolio and assuming the CDF of Xt+1 is given
by FX.

Definition: The conditional loss distribution is the distribution of Lt+1 given the
time t composition of the portfolio and conditional on the information in Ft .

For relatively short horizons, e.g. 1 day or 10 days, then the conditional loss
distribution is clearly the appropriate distribution for risk management purposes

- particularly true in periods of high market volatility.
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Value-at-Risk
Value-at-Risk (VaR) is the most widely used risk measure in the financial
industry.

VaR is calculated using a loss distribution.

Will assume the horizon, ∆, has been fixed, e.g. 1 day or 10 days, and that L
represents the loss on the portfolio over the time interval ∆

- will use FL(·) to denote the CDF of L.
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Value-at-Risk
Definition: Let F : R→ [0, 1] be an arbitrary CDF. Then for α ∈ (0, 1) the
α-quantile of F is defined by

qα(F) := inf{x ∈ R : F(x) ≥ α}.

If F continuous and strictly increasing, then qα(F) = F−1(α).

Definition: Let α ∈ (0, 1) be some fixed confidence level. Then the VaR of the
portfolio loss at the confidence level, α, is given by VaRα := qα(L), the
α-quantile of the loss distribution.
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The Normal and t Distributions
Normal and t CDFs are both continuous and strictly increasing so easy to
calculate their VaRα.

If L ∼ N(µ, σ2) then

VaRα = µ+ σΦ−1(α) where Φ is the standard normal CDF. (11)
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The Normal and t Distributions
If L ∼ t(ν, µ, σ2) so that (L − µ)/σ has a standard t distribution with ν > 2 dof,
then

VaRα = µ+ σt−1
ν (α)

where tν is the CDF for the t distribution with ν degrees-of-freedom.
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Weaknesses of Value-at-Risk
VaR has several weaknesses:

1. It attempts to describe the entire loss distribution with a single number
- so significant information is not captured in VaR
- this criticism applies to all scalar risk measures.

2. Significant model risk attached to VaR
- e.g. If loss distribution is heavy-tailed but a light-tailed, e.g., normal

distribution is assumed, then VaRα will be severely underestimated as α→ 1.

3. VaR is not sub-additive so it doesn’t lend itself to aggregation.
e.g. Let L = L1 + L2 be total loss associated with two portfolios. Then

qα(FL) > qα(FL1) + qα(FL1) is possible. (12)

– so possibly no diversification benefit when we combine two portfolios.
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Algorithmic Trading
Key motivation for algorithmic trading is that investors are no longer price-takers
but instead are adversely affected by their trading.

In particular, when they wish to buy (sell) securities the price begins to rise (fall)
and so they end up paying more (receiving less) than the original price that
prevailed at the beginning of their trading.

Need to account for adverse price moves by modeling temporary and permanent
price impact

- magnitude of price impact depends on liquidity of the security.

No strict definition of liquidity but think of a security as being liquid if we can
quickly trade large quantities with little price impact, i.e. low slippage.

2



Optimal Execution of a Single Stock
Consider a simple model for selling a total of X shares over a single day.

In order to execute this trade we break the day into a total of T time periods.

e.g. If we take duration of a time period to be 5 minutes, then will have T = 78
time periods if trading on the NYSE.

Let nj = # of shares sold in the jth period and let n := (n1, . . . ,nT) denote
execution sequence for the T periods.

Set x0 = X and define xk := X −
∑k

j=1 nj for k = 1, . . . ,T
- so xk denotes number of shares that have yet to be sold after the kth period
- must have X =

∑T
j=1 nj .
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Optimal Execution of a Single Stock
Let Sk denote the pre-trade price for the kth period and let Ŝk denote the
realized price-per-share that is obtained for the nk shares sold at that time.

Assume temporary price impact function, h(n), so that

Ŝk = Sk − h(nk). (13)

Model the permanent price impact via the function, g(n), so that

Sk+1 = Sk + σzk − g(nk) (14)

where the zk ’s are IID standard normal random variables and σ is a volatility
parameter.

Note that temporary price impact, h(nk), in period k only affects the realized
price in period k.
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Optimal Execution of a Single Stock
(13) and (14) imply that total realized revenue of execution strategy satisfies

T∑
k=1

Ŝknk =
T∑

k=1
(Sk − h(nk)) nk

=
T∑

k=1

(
S1 +

k−1∑
j=1

(
σzj − g(nj)

)
nk −

T∑
k=1

h(nk)nk (15)

= S1X + σ

T∑
k=1

zkxk −
T∑

k=1
g(nk)xk −

T∑
k=1

h(nk)nk . (16)

Expected cost of the execution strategy is

C (n) = XS1 −
T∑

k=1
g(nk)xk −

T∑
k=1

h(nk)nk .
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Optimal Execution of a Single Stock
The risk, i.e. variance, of the execution strategy is V (n) := σ2∑T

k=1 x2
k .

Can now formulate optimal execution optimization problem as

min
n≥0

C (n) + ρV (n) (17)

where ρ is chosen to tradeoff cost versus risk.
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Optimal Execution of a Single Stock
Before solving (17) also need to specify the price impact functions:

Typical choice for g is a linear impact so that g(v) = γv.

Temporary price impact function typically chosen to be non-linear. One
possibility: the Kissel-Glantz function

h(n) = a1

(
100 |n|

V

)β

+ a2σ + a3

V = average daily traded volume and ai ’s can be estimated via regression.

(17) can now be solved via standard non-linear optimization methods.

7



Foundations of Financial Engineering
Algorithmic Trading: Limit Order Books and Dark Pools

Martin B. Haugh
Department of Industrial Engineering and Operations Research

Columbia University



Limit Order Books
The execution model we saw earlier only accounts for one level of overall trading
strategy.

Once we have determined nk = # of shares to be sold in period k, we must
decide how to actually sell these shares.

Could use limit orders or market orders executed via the limit-order book but
could also send the trades to dark-pools.

Goal at all times is to obtain best execution and prevent other market
participants from learning about you and therefore front-running your trades.

A limit-order book is a database that keeps buy orders, i.e. bids, and sell orders,
i.e. offers, on a price-time-priority basis.

A limit order has an associated quantity and price at which the order (buy or sell)
can be executed.

Limit orders arrive regularly to the order book but the execution of a limit order
is uncertain and may never occur.
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Taken from the article “Limit Order Books” (2013) by Gould, Porter, Williams,
McDonald, Fenn and Howison.



Limit Order Books
This is in contrast to a market order.
e.g. Consider a market order to buy Q shares and let po be the best, i.e. lowest,
offer price in the limit order book

- let Qo be the number of shares offered at po.

Then the market order will purchase min(Q,Qo) shares at price po.

If Q > Qo, then remaining Q −Qo shares will be executed at successively higher
offer prices in order-book until all Q shares are purchased.

Market orders to sell shares are transacted similarly by “hitting” the best bids in
the order-book.

Advantage of a market order is that execution is guaranteed and immediate.

Disadvantage of a market order is that execution price is not as good and it is
necessary to pay (at least) the bid-ask spread.
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Taken from the article “Limit Order Books” (2013) by Gould, Porter, Williams,
McDonald, Fenn and Howison.



Dark Pools
In contrast to limit-order books, dark pools are trading venues where blocks of
shares can be bought or sold without revealing the trade size or identity of agents
until trade is filled.

In contrast, regular exchanges (with limit-order books) are called lit pools.

Consequently, dark pool trading hopes to avoid market impact
- but volume of shares executed is uncertain.

There is also some controversy associated with dark pools as they are said to
hinder the “price-discovery” process.

Optimal execution in limit-order books and dark pools is currently a very active
research area.

Also currently the focus of many market regulators who seek to understand and
prevent adverse events such as the flash-crash of May 2010.
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