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Single Period Models
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There are N + 1 securities available for trading.
At t = 1 one of m possible states will occur.
S (i)

0 := time 0 value of ith security, 0 ≤ i ≤ N .
S (i)

1 (ωj) := its value at date t = 1 if outcome ωj occurs.
P = (p1, . . . , pm) := the true probability distribution

- vital assumption: pk > 0 for each k.
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Arbitrage in Single Period Models
Definition: A type A arbitrage is an investment that produces immediate
positive reward at t = 0 and has no future cost at t = 1.

Definition: A type B arbitrage is an investment that has non-positive cost at
t = 0 but has positive probability of yielding a positive payoff at t = 1 and zero
probability of producing a negative payoff then.

We always assume that arbitrage opportunities do not exist.

Definition: Let S (1)
0 and S (2)

0 be the date t = 0 prices of two securities whose
payoffs at date t = 1 are d1 ∈ Rm and d2 ∈ Rm, respectively. We say that linear
pricing holds if for all α1 and α2, α1S (1)

0 + α2S (2)
0 is the value of the security

that pays α1d1 + α2d2 at date t = 1.

Easy to see absence of type A arbitrage ⇒ linear pricing holds. Why?

Always assume no arbitrage opportunities ⇒ always assume linear pricing holds
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Elementary Securities, Attainability and State Prices

Definition: An elementary security is a security with date t = 1 payoff of the
form ej = (0, . . . , 0, 1, 0, . . . , 0), i.e. a payoff of 1 in state j and 0 otherwise.

As there are m possible states at t = 1, there are m elementary securities.

Definition: A security or contingent claim, X , is attainable if there exists a
trading strategy, θ = [θ0 θ1 . . . θN ]>, such that

 X(ω1)
...

X(ωm)

 =

 S (0)
1 (ω1) . . . S (N)

1 (ω1)
...

...
...

S (0)
1 (ωm) . . . S (N)

1 (ωm)


 θ0

...
θN

 . (1)

In shorthand, X = S1θ and we call θ the replicating portfolio for X .
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An Attainable Claim
Example 1: m = 4 possible states of nature and 3 securities, i.e. N = 2.

t = 0 t = 1
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[1.03, 3, 2]

b ω2 [1.03, 4, 1]

b ω3 [1.03, 2, 4]

b ω4 [1.03, 5, 2]

The claim X = [7.47 6.97 9.97 10.47]> is attainable. Why?

Because X = S1θ where θ = [−1 1.5 2]>

- so θ is a replicating portfolio for X .

Note that attainability does not depend on date t = 0 cost of the securities.
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A More Formal Definition of Arbitrage
Definition: A type A arbitrage is a trading strategy, θ, such that S>0 θ < 0 and
S1θ = 0.

Definition: A type B arbitrage is a trading strategy, θ, such that S>0 θ ≤ 0,
S1θ ≥ 0 and S1θ 6= 0.

Note if S>0 θ < 0 then θ has negative cost and so produces an immediate positive
reward if purchased at t = 0.

Definition: Say that a vector π = [π1 . . . πm]> > 0 is a vector of state prices if
the date t = 0 price, P, of any attainable security, X , satisfies

P =
m∑

k=1
πkX(ωk). (2)

We call πk the kth state price.
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State Prices
Remark: There might be many state price vectors. If kth elementary security is
attainable, then it’s price must be πk and so kth component of all possible state
price vectors must therefore coincide.

Can easily check

[π1 π2 π3 π4]> = [0.2433 0.1156 0.3140 0.3168]>

is a vector of state prices in model of Example 1 below.

Example 1 ctd:

t = 0 t = 1
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State Prices
More generally, however,

π1
π2
π3
π4

 =


0

0.3102
0.4113
0.2682

 + ε


0.7372
−0.5898
−0.2949
0.1474


is also a vector of state prices for any ε such that πi > 0 for 1 ≤ i ≤ 4.
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Numeraire Securities
Definition: A numeraire security is a security with a strictly positive price at all
times, t.

Often convenient to express a security price in units of a chosen numeraire. For
example, if the nth security is the numeraire security, then define

S (i)
t (ωj) := S (i)

t (ωj)
S (n)

t (ωj)

to be the date t, state ωj price (in units of the numeraire security) of the ith

security. We say that we are deflating by the nth or numeraire security.

Remark: Deflated price of the numeraire security is always equal to 1.

Definition: The cash account is a security that earns interest at the risk-free rate
of interest. In a single period model, the date t = 1 value of the cash account is
(1 + r)× initial price, regardless of terminal state.
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Numeraire Securities
In practice, often deflate by the cash account if it is available.

Note that deflating by the cash account ≡ the usual process of discounting.

Will use the zeroth security with price process, S (0)
t , to denote the cash

account whenever it is available.

Note that any security in Example 1 could serve as a numeraire security since
each of the 3 securities has a strictly positive price process.

Also clear that the 0th security there is actually the cash account.
Example 1 ctd:

t = 0 t = 1
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Equivalent Martingale Measure (EMM)
Let S (n)

t denote the date t price of our chosen numeraire security.

Definition: An equivalent martingale measure (EMM) or risk-neutral probability
measure is a set of probabilities, Q = (q1, . . . , qm) such that

1. qk > 0 for all k.
2. The deflated security prices are martingales. That is

S (i)
0 := S (i)

0

S (n)
0

= EQ
0

[
S (i)

1

S (n)
1

]
=: EQ

0

[
S (i)

1

]
for all i where EQ

0 [.] denotes expectation with respect to the risk-neutral
probability measure, Q.

Remark: Note that the EMM is specific to the chosen numeraire security, S (n)
t .

In fact it would be more accurate to speak of an EMM-numeraire pair.
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Complete Markets
Now assume there are no arbitrage opportunities. If there is a full set of m
elementary securities available, i.e. they are all attainable, then can use the state
prices to compute the date t = 0 price, P, of any security.

To see this, let x = [x1 . . . xm]> be the vector of possible date t = 1 payoffs of a
particular security. May then write

x =
m∑

i=1
xiei

and use linear pricing to obtain P =
∑m

i=1 xiπi .

So if a full set of elementary securities exists, then we can construct and price
every possible security.

Definition: If every random variable X is attainable, then market is complete.
Otherwise we have an incomplete market.
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Martingale Pricing Theory: Single-Period Models
Proposition 1: There are no arbitrage opportunities if an EMM, Q, exists.
Proof: First recall that a type A arbitrage is a trading strategy, θ, such that
S>0 θ < 0 and S1θ = 0.

Also recall that Q = (q1, . . . , qm) > 0 is an EMM if for all i

S (i)
0 := S (i)

0

S (n)
0

= EQ
0

[
S (i)

1

S (n)
1

]
=: EQ

0

[
S (i)

1

]
.

Remark: If we did not insist that qk > 0 in the definition of an EMM then the
proposition would not hold. Why?
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Martingale Pricing Theory: Single-Period Models
Theorem 2: Assume there is a security with strictly positive price process, S (n)

t .

1. If there is a set of positive state prices, then a risk-neutral probability
measure, Q, exists with S (n)

t as the numeraire security.

2. There is a one-to-one correspondence between sets of positive state prices
and risk-neutral probability measures for the given numeraire.
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Martingale Pricing Theory: Single-Period Models
Proof: Suppose a set of positive state prices, π = [π1 . . . πm]>, exists. For all j
we then have

S (j)
0 =

m∑
k=1

πkS (j)
1 (ωk)

=
( m∑

l=1
πlS (n)

1 (ωl)
) m∑

k=1

πkS (n)
1 (ωk)∑m

l=1 πlS (n)
1 (ωl)

S (j)
1 (ωk)

S (n)
1 (ωk)

. (3)

If we define

qk := πkS (n)
1 (ωk)∑m

l=1 πlS (n)
1 (ωl)

, (4)

then Q := (q1, . . . , qm) defines a probability measure.

Also observe
∑m

l=1 πlS (n)
1 (ωl) = S (n)

0 .
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Martingale Pricing Theory: Single-Period Models
(3) and (4) then imply

S (j)
0

S (n)
0

=
m∑

k=1
qk

S (j)
1 (ωk)

S (n)
1 (ωk)

= EQ
0

[
S (j)

1

S (n)
1

]
(5)

and so Q is an EMM, as desired.

The one-to-one correspondence between sets of positive state prices and
risk-neutral probability measures is clear from (4)

- the denominator on rhs of (4) is just a normalizing constant. 2

Remark. The true real-world probabilities, P = (p1, . . . , pm), are almost
irrelevant here. The only connection between P and Q is that they must be
equivalent, i.e. pk > 0⇔ qk > 0.
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No Arb. ≡ Existence of Pos. State Prices ≡ Existence of EMM

Theorem 3: In a one-period model there is no arbitrage if and only if there
exists a set of positive state prices.

Proof: (i) Suppose there exists a set of positive state prices. If there also exists a
numeraire security then by Prop 1. and Theorem 2 there is no arbitrage.

(If a numeraire security does not exist then we can show directly that there
cannot be an arbitrage.)

(ii) Other direction relies on linear programming duality.
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No Arb. ≡ Existence of Pos. State Prices ≡ Existence of EMM

We now have:

Theorem 4: (First Fundamental Theorem of Asset Pricing)
Assume there exists a security with strictly positive price process. Then the
absence of arbitrage, the existence of state prices and the existence of an EMM,
Q, are all equivalent.

Example 1 ctd: This model is arbitrage-free since we saw earlier that a vector of
positive state prices exists.

t = 0 t = 1
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A Market with Arbitrage Opportunities
Example 2: Consider the following one-period, 2-state model:

t = 0 t = 1

b[1, 1.9571, 2.2048]
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��b ω1 [1.05, 2, 3]

b ω2 [1.05, 1, 2]

No positive state price vector exists for this model so there must be an arbitrage
opportunity.

Exercise: Find an arbitrage strategy, θ, in this model.
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Complete / Incomplete Markets
Theorem 5: Assume there are no arbitrage opportunities. Then the market is
complete if and only if the matrix of date t = 1 payoffs, S1, has rank m.

Proof: The proof is immediate!
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An Incomplete Market
Example 1 ctd:

t = 0 t = 1
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[1.03, 3, 2]bω2 [1.03, 4, 1]bω3 [1.03, 2, 4]bω4 [1.03, 5, 2]

The model is arbitrage-free since we saw earlier that a vector of positive state
prices exists.

But the model is incomplete since rank of payoff matrix, S1, can be at most 3
which is less than the number of possible states, 4.
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A Complete Market
Example 3: Consider one-period model below where there are m = 4 possible
states of nature and 4 securities, i.e N = 3.

t = 0 t = 1
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[1.03, 3, 2, 1]b ω2 [1.03, 4, 1, 2]b ω3 [1.03, 2, 4, 1]b ω4 [1.03, 5, 2, −2]

Can easily check that rank(S1) = 4 = m, so this model is indeed complete.

Can also confirm model is arbitrage-free by checking
[π1 π2 π3 π4]> := [0.2433 0.1156 0.3140 0.3168]>

is a (unique) state price vector.

Exercise: Show that if a market is incomplete, then at least one elementary
security is not attainable.
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The Second Fundamental Theorem of Asset Pricing

Theorem 6: (Second Fundamental Theorem of Asset Pricing)
Assume there exists a security with strictly positive price process and there are no
arbitrage opportunities.
Then the market is complete if and only if there exists exactly one equivalent
martingale measure or equivalently, one vector of positive state prices.

Proof: (i) Suppose first that market is complete. Then there exists a unique set
of positive state prices, and therefore by Theorem 2 a unique risk-neutral
probability measure.

(i) Other direction relies on linear programming duality theory.
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Multi-Period Models

Example

t = 0 t = 1 t = 2
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First need to extend some single-period definitions and introduce concepts of
trading strategies and self-financing trading strategies.

Will assume no-dividends for now – but the extension to dividends is easy.
2



Multi-Period Models
As before there are N + 1 securities, m possible states of nature and that
true probability measure is denoted by P = (p1, . . . , pm) > 0.

The investment horizon is [0,T ] and there are a total of T trading periods.

Securities may therefore be purchased or sold at any date t for
t = 0, 1, . . . ,T − 1.

Our example shows a typical multi-period model with T = 2 and m = 9
possible states.

The manner in which information is revealed as time elapses is clear from
this model.

e.g. At node I 4,5
1 the available information tells us that the true state of the

world is either ω4 or ω5.
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Multi-Period Models
Multi-period model is composed of a series of single-period models.

e.g. At date t = 0 there is a single one-period model corresponding to node
I0. Similarly at date t = 1 there are three possible one-period models
corresponding to nodes I 1,2,3

1 , I 4,5
1 and I 6,7,8,9

1 , respectively.

The particular one-period model that prevails at t = 1 will depend on the
true state of nature.

Given a probability measure, P = (p1, . . . , pm), can easily compute
conditional probabilities of each state.

e.g. P(ω1|I 1,2,3
1 ) = p1/(p1 + p2 + p3).

Conditional probabilities can be interpreted as probabilities in corresponding
single-period models.

e.g. p1 = P(I 1,2,3
1 |I0) P(ω1|I 1,2,3

1 ).

This observation allows us to easily generalize single-period results to
multi-period models.

4



Predictable Trading Strategies
Definition: A predictable stochastic process is a process whose time t value, Xt ,
is known at time t − 1 given all the information that is available at time t − 1.

Definition: A trading strategy is a vector, θt = [θ(0)
t (ω) . . . θ(N)

t (ω)]>, of
predictable stochastic processes that describes the number of units of each
security held just before trading at time t, as a function of t and ω.

So θ(i)
t (ω) = # of units of ith security held between times t − 1 and t in state ω

- if θ(i)
t negative then it equals number of units sold short.

Important to emphasize that θt is known at date t − 1 .
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Constraints Imposed by Predictability
Example: Referring to earlier 2-period model, must be the case that:

θ
(i)
2 (ω1) = θ

(i)
2 (ω2) = θ

(i)
2 (ω3)

θ
(i)
2 (ω4) = θ

(i)
2 (ω5)

θ
(i)
2 (ω6) = θ

(i)
2 (ω7) = θ

(i)
2 (ω8) = θ

(i)
2 (ω9).

t = 0 t = 1 t = 2
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Self-Financing Trading Strategies
Definition: The value process, Vt(θ), associated with a trading strategy, θt , is
defined by

Vt =


∑N

i=0 θ
(i)
1 S (i)

0 for t = 0∑N
i=0 θ

(i)
t S (i)

t for t ≥ 1.

Definition: A self-financing trading strategy is a strategy, θt , where changes in
Vt are due entirely to trading gains or losses, rather than the addition or
withdrawal of cash funds.

In particular, a self-financing strategy satisfies

Vt =
N∑

i=0
θ

(i)
t+1S (i)

t for t = 1, . . . ,T − 1.
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Self-Financing Trading Strategies
Exercise: Show that if a trading strategy, θt , is self-financing then the
corresponding value process, Vt , satisfies

Vt+1 −Vt =
N∑

i=0
θ

(i)
t+1

(
S (i)

t+1 − S (i)
t

)
. (6)

Clearly then changes in the value of the portfolio are due to capital gains or
losses and are not due to the injection or withdrawal of funds.

Can also write (6) as dVt = θ>t dSt

- anticipates continuous-time definition of self-financing.
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Arbitrage in Multi-Period Models
Can now define arbitrage in our multi-period setting:

Definition: A type A arbitrage opportunity is a self-financing trading strategy,
θt , such that V0(θ) < 0 and VT(θ) = 0.

Definition: A type B arbitrage opportunity is a self-financing trading strategy,
θt , such that V0(θ) = 0, VT(θ) ≥ 0 and EP

0[VT(θ)] > 0.
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Contingent Claims and Attainability
Definition: A contingent claim, C , is a random variable whose value at time T
is known at that time given the information available then.

Definition: A contingent claim C is attainable if there exists a self-financing
trading strategy, θt , whose value process, VT , satisfies VT = C .

t = 0 t = 1 t = 2
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Complete and Incomplete Markets
Can now extend definition of completeness:

Definition: We say a market is complete if every contingent claim is attainable.
Otherwise the market is incomplete.

Note that above definitions of attainability and (in)completeness are consistent
with single-period definitions.

t = 0 t = 1 t = 2
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Equivalent Martingale Measures (EMMs)
Definitions of numeraire security and cash account are unchanged from
one-period definitions.

Can now give multi-period definition of an equivalent martingale measure
(EMM), or set of risk-neutral probabilities:

Assume again we have a specific numeraire security with price process, S (n)
t .

Definition: An equivalent martingale measure (EMM), Q = (q1, . . . , qm), is a
set of probabilities such that

1. qi > 0 for all i = 1, . . . ,m.

2. The deflated security prices are martingales. That is

S (i)
t := S (i)

t

S (n)
t

= EQ
t

[
S (i)

t+s

S (n)
t+s

]
=: EQ

t

[
S (i)

t+s

]
for s, t ≥ 0, for all i = 0, . . . ,N .
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Equivalent Martingale Measures (EMMs)
Proposition 7: If an EMM, Q, exists, then the deflated value process, Vt , of any
self-financing trading strategy is a Q-martingale.

Proof. Let θt be the self-financing trading strategy and let V t+1 := Vt+1/S (n)
t+1

denote the deflated value process. We then have

EQ
t
[
V t+1

]
= EQ

t

[ N∑
i=0

θ
(i)
t+1S (i)

t+1

]

=
N∑

i=0
θ

(i)
t+1E

Q
t

[
S (i)

t+1

]
=

N∑
i=0

θ
(i)
t+1S (i)

t

= V t

demonstrating that V t is indeed a Q-martingale, as claimed.

Proposition 8: There can be no arbitrage opportunities if an EMM, Q, exists.
2



Absence of Arbitrage ≡ Existence of EMM
Can now now state principal result for multi-period models (assuming a
numeraire security exists):

Theorem 9: (First Fundamental Theorem of Asset Pricing)
In the multi-period model no arbitrage ⇔ existence of an EMM, Q.

Outline Proof: (i) Suppose first there is no arbitrage.
Then can easily argue no arbitrage in any of the embedded one-period models.
This then implies that each embedded one-period model has a set of risk-neutral
probabilities.
By multiplying these probabilities appropriately, can construct a multi-period
EMM, Q.

(ii) Suppose there exists an EMM, Q. Then previous proposition gives result. 2

3



Complete Markets
Proposition 10: The market is complete if and only if every embedded
one-period model is complete.
Exercise: Prove this proposition.

t = 0 t = 1 t = 2
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Complete Markets ≡ Unique EMM
Theorem 11: (Second Fundamental Theorem of Asset Pricing)
Assume there exists a security with strictly positive price process and that there
are no arbitrage opportunities.
Then the market is complete if and only if there exists exactly one risk-neutral
martingale measure, Q.

Outline Proof: (i) Suppose the market is complete. Then Prop. 10 implies every
embedded one-period model is complete so every embedded one-period model
has a unique EMM. Therefore the multi-period model has a unique EMM, Q.

(ii) Suppose now Q is unique. Then the EMM corresponding to each one-period
model is also unique. Therefore each one-period model is complete and so the
multi-period model is complete. 2
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An Aside: State Prices
As in single-period models, also have an equivalence between EMMs, Q, (for a
given numeraire) and sets of state prices.
Use π{t+s}

t (Λ) to denote time t price of a security that pays $1 at time t + s in
event that ω ∈ Λ

- implicity assuming we can tell at time t + s whether or not ω ∈ Λ.

Example: π{1}0 ({ω4, ω5}) is a valid expression whereas π{1}0 ({ω4}) is not.

t = 0 t = 1 t = 2
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b ω1 [1.1235, 2, 1]

b ω2 [1.1235, 2, 3]

b ω3 [1.1235, 1, 2]b ω4 [1.1025, 2, 3]

b ω5 [1.1025, 1, 2]

b ω6 [1.1025, 3, 2]b ω7 [1.0815, 4, 1]

b ω8 [1.0815, 2, 4]

b ω9 [1.0815, 5, 2]

Key: [S (0)
t , S (1)

t , S (2)
t ]

Example 4

Is there a cash account in this market?
Any immediate observations regarding market (in)completeness?



Further Questions & Exercises
1. Are there any arbitrage opportunities in this market?

2. If not, is this a complete or incomplete market?

3. Compute the state prices in this model.

4. Compute the risk-neutral, i.e. martingale probabilities, when we discount by
the cash account, i.e., the 0th security.

5. Compute the risk-neutral probabilities when we discount by the 2nd security.

6. Using the state prices, find the price of a call option on the the 1st asset
with strike k = 2 and expiration date t = 2.

7. Confirm your answer to Q.6 by recomputing the option price using the EMM
from Q.5.
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Example 5

Is there a cash account in this market?
Any immediate observations regarding market (in)completeness?



Further Questions & Exercises
1. Is this model arbitrage free?

2. Suppose the prices of the three securities were such that there were no
arbitrage opportunities.
Without bothering to compute such prices, do you think the model would
then be a complete or incomplete model?

3. Suppose again that security prices were such that there were no arbitrage
opportunities.

Give a simple argument for why forward contracts are attainable

- which means we can therefore price them in this model.
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Dividends and Intermediate Cash-Flows
Consider a dividend-paying stock. No problem in one-period model since t = 1
dividend can simply be added to t = 1 value of the security.

In multi-period models, all results go through – as long as we are careful with our
“bookkeeping”.

For example, if θt is a self-financing strategy in a model with dividends then
corresponding value process, Vt , should satisfy

Vt+1 −Vt =
N∑

i=0
θ

(i)
t+1

(
S (i)

t+1 + D(i)
t+1 − S (i)

t

)
. (7)

Note that time t dividends, D(i)
t , do not appear in (7) since St and Vt represent

ex-dividend prices.

Must also redefine an EMM: now require the deflated cumulative gains process to
be a Q-martingale.

The cumulative gain process, Gt , of a security at time t = value of security at
time t plus accumulated cash payments that result from holding the security.

2



Dividends and Intermediate Cash-Flows
Definitions of complete and incomplete markets are unchanged and the
fundamental theorems still hold with new definition of EMM, self-financing
strategies etc.

e.g. If model is arbitrage-free then there exists an EMM, Q, such that

S t = EQ
t

[ t+s∑
j=t+1

Dj + S t+s

]

where Dj = time j dividend that you receive if you hold one unit of the security,
and St is its time t ex-dividend price.

If a security pays dividends then we cannot use it as the numeraire.

Instead can use the security’s cumulative gains process as the numeraire
- as long as this gains process is strictly positive
- this makes sense as it is the gains process that represents the true value

dynamics of holding the security.
3



Using a Dividend-Paying Security as the Numeraire

Easy (though tedious!) to check that all results regarding existence of EMMs and
complete markets go through as before.

Just have to view each dividend as a separate security with St then interpreted as
the price of the portfolio consisting of these ‘dividend’ securities as well as a
security that is worth St+s at date t + s.

Alternatively, could imagine re-investing dividends back into the securities to
obtain a non-dividend model.
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Martingale Pricing and the Binomial Model
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t = 0 t = 1 t = 2 t = 3

100

106

112.36

119.1016

100

106

94.3396 94.3396

88.9996

83.9619

Cash account available and gross risk-free rate per period = R.

Stock goes up by a factor of u or down by factor of d in each period. The lattice
therefore recombines:

- very advantageous for pricing non-path dependent derivatives
- all embedded one-period models are identical.
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The Binomial Model
No arbitrage if d < R < u. Why?

Model is complete. Why?

3



A Counterintuitive Result: Pricing a European Call Option with K = $95

Gross Risk-free Rate = 1.02
Stock Price European Option Price

119.10 24.10
112.36 106.00 19.22 11.00

106.00 100.00 94.34 14.76 7.08 0.00
100.00 94.34 89.00 83.96 11.04 4.56 0.00 0.00

t=0 t=1 t=2 t=3 t=0 t=1 t=2 t=3

Gross Risk-free Rate = 1.04
Stock Price European Option Price

119.10 24.10
112.36 106.00 21.01 11.00

106.00 100.00 94.34 18.19 8.76 0.00
100.00 94.34 89.00 83.96 15.64 6.98 0.00 0.00

t=0 t=1 t=2 t=3 t=0 t=1 t=2 t=3

Question: Is this surprising?
4



Foundations of Financial Engineering
Martingale Pricing: Futures Contracts

Martin B. Haugh
Department of Industrial Engineering and Operations Research

Columbia University



Calculating Futures Prices
Assume: (i) complete markets (ii) cash account is numeraire (iii) no dividends.

Let Fk = date k price of a futures contract written on a particular underlying
security with process Sk .

Contract expires after n periods. Then know that Fn = Sn. Why?

Can compute time t = n − 1 futures price, Fn−1, by noting that (why?)

0 = EQ
n−1

[
Fn − Fn−1

Bn

]
.

Therefore obtain Fn−1 = EQ
n−1[Fn].

2



Calculating Futures Prices
Same argument yields Fk = EQ

k [Fk+1] for 0 ≤ k < n.

Law of iterated expectations then implies F0 = EQ
0 [Fn]

- so futures price process is a Q-martingale!

Since Fn = Sn also have
F0 = EQ

0 [Sn] . (8)

3



Calculating Futures Prices
Question 1: What property of the cash account did we use in deriving
F0 = EQ

0 [Sn]?

As a result (8) only holds when Q is the EMM corresponding to taking the cash
account as numeraire.

Question 2: Does the equation F0 = EQ
0 [Sn] change if the underlying security

pays dividends?
(In that case can take Si to be the ex-dividend price of the security at time i.)

4



Example: Futures and American Options
Example: Commodity price follows binomial model with u = 1.03, d = .98,
R = 1.01 per period and no storage costs.

Check that risk-neutral probabilities of up- and down-moves are q = .6 and
1− q = .4, respectively.

Have the following price lattice:

Commodity Price
119.41

115.93 113.61
112.55 110.30 108.09

109.27 107.09 104.95 102.85
106.09 103.97 101.89 99.85 97.85

103.00 100.94 98.92 96.94 95.00 93.10
100.00 98.00 96.04 94.12 92.24 90.39 88.58

t=0 t=1 t=2 t=3 t=4 t=5 t=6

5



Example: Futures and American Options
Let Sk denote the commodity price at time k.
Futures contract on commodity exists and expires after six periods.
Futures price therefore satisfies Fk = R6−kSk .
Obtain following futures price lattice:

Futures Price
119.41

117.09 113.61
114.81 111.40 108.09

112.58 109.24 105.99 102.85
110.40 107.12 103.94 100.85 97.85

108.25 105.04 101.92 98.89 95.95 93.10
106.15 103.00 99.94 96.97 94.09 91.30 88.58

t=0 t=1 t=2 t=3 t=4 t=5 t=6

6



Example: Futures and American Options
Suppose we wish to price American put option on the futures contract.

Option expires at same time as futures contract, i.e. after 6 periods.
Strike = $105.

Then obtain the price lattice below for the option.

Price of American Put Option on Futures Price
0.00

0.00 0.00
0.00 0.00 0.00

0.13 0.34 0.85 2.15
0.50 1.05 2.15 4.15 7.15

1.12 2.09 3.70 6.11 9.05 11.90
2.00 3.37 5.38 8.03 10.91 13.70 16.42

t=0 t=1 t=2 t=3 t=4 t=5 t=6
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Calculating Forwards Prices
Let G0 = date t = 0 price of a forward contract for delivery of security at t = n.

Recall G0 chosen so that contract initially worth zero. Therefore obtain

0 = EQ
0

[
Sn −G0

Bn

]
so that

G0 = EQ
0 [Sn/Bn]
EQ

0 [1/Bn]
. (9)

Note that (9) holds regardless of whether or not underlying pays dividends
- or coupons or storage costs (which may be viewed as negative dividends).

Dividends (or other intermediate cash-flows) influence G0 through evaluation of
EQ

0 [Sn/Bn]
- remember when there are dividends, it is the deflated cumulative gains

process that is a Q-martingale.
2



When Do Forwards and Futures Prices Coincide?
Can now identify when forwards and futures price coincide.

Theorem: If Bn and Sn are Q-independent, then G0 = F0. In particular, if
interest rates are deterministic, then G0 = F0.

Corollary: In the binomial model with a constant (or deterministic) gross interest
rate, R, we must have G0 = F0.

Exercise: Suppose interest rates are stochastic and positively “correlated” with
movements in the underlying market. Would you expect F0 to be greater than
the forward price, G0, or less than it? Justify your answer.

3
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