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A Brief Introduction to Stochastic Calculus

These notes provide a very brief introduction to stochastic calculus, the branch of mathematics that is most
identified with financial engineering and mathematical finance. We will ignore most of the technical details and
take an “engineering” approach to the subject. We will only introduce the concepts that are necessary for
deriving the Black-Scholes formula later in the course. These concepts include quadratic variation, stochastic
integrals and stochastic differential equations. We will of couse also introduce Itô’s Lemma, probably the most
important result in stochastic calculus.

1 Martingales, Brownian Motion and Quadratic Variation

We make the following assumptions throughout.

• There is a probability triple (Ω,F , P ) where

– P is the “true” or physical probability measure

– Ω is the universe of possible outcomes. We use ω ∈ Ω to represent a generic outcome, typically a
sample path of a stochastic process.

– the set F represents the set of possible events where an event is a subset of Ω.

• There is also a filtration, {Ft}t≥0, that models the evolution of information through time. So for example,
if it is known by time t whether or not an event, E, has occurred, then we have E ∈ Ft. If we are working
with a finite horizon, [0, T ], then we can take F = FT .

• We also say that a stochastic process, Xt, is Ft-adapted if the value of Xt is known at time t when the
information represented by Ft is known. All the processes we consider will be Ft-adapted so we will not
bother to state this in the sequel.

• In the continuous-time models that we will study, it will be understood that the filtration {Ft}t≥0 will be
the filtration generated by the stochastic processes (usually a Brownian motion, Wt) that are specified in
the model description.

1.1 Martingales and Brownian Motion

Definition 1 A stochastic process, {Wt : 0 ≤ t ≤ ∞}, is a standard Brownian motion if

1. W0 = 0

2. It has continuous sample paths

3. It has independent, stationary increments.

4. Wt ∼ N(0, t).

Definition 2 An n-dimensional process, Wt = (W
(1)
t , . . . ,W

(n)
t ), is a standard n-dimensional Brownian

motion if each W
(i)
t is a standard Brownian motion and the W

(i)
t ’s are independent of each other.

Definition 3 A stochastic process, {Xt : 0 ≤ t ≤ ∞}, is a martingale with respect to the filtration, Ft, and
probability measure, P , if
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1. EP [|Xt|] <∞ for all t ≥ 0

2. EP [Xt+s|Ft] = Xt for all t, s ≥ 0.

Example 1 (Brownian martingales)
Let Wt be a Brownian motion. Then Wt , W 2

t − t and exp
(
θWt − θ2t/2

)
are all martingales.

The latter martingale is an example of an exponential martingale. Exponential martingales are of particular
significance since they are positive and may be used to define new probability measures.

Exercise 1 (Conditional expectations as martingales) Let Z be a random variable and set
Xt := E[Z|Ft]. Show that Xt is a martingale.

1.2 Quadratic Variation

Consider a partition of the time interval, [0, T ] given by

0 = t0 < t1 < t2 < . . . < tn = T.

Let Xt be a Brownian motion and consider the sum of squared changes

Qn(T ) :=

n∑
i=1

[∆Xti ]
2

(1)

where ∆Xti := Xti −Xti−1
.

Definition 4 (Quadratic Variation) The quadratic variation of a stochastic process, Xt, is equal to the
limit of Qn(T ) as ∆t := maxi(ti − ti−1)→ 0.

Theorem 1 The quadratic variation of a Brownian motion is equal to T with probability 1.

The functions with which you are normally familiar, e.g. continuous differentiable functions, have quadratic
variation equal to zero. Note that any continuous stochastic process or function1 that has non-zero quadratic
variation must have infinite total variation where the total variation of a process, Xt, on [0, T ] is defined as

Total Variation := lim
∆t→0

n∑
i=1

|Xtk −Xtk−1
|.

This follows by observing that

n∑
i=1

(Xtk −Xtk−1
)2 ≤

(
n∑
i=1

|Xtk −Xtk−1
|

)
max

1≤k≤n
|Xtk −Xtk−1

|. (2)

If we now let n→∞ in (2) then the continuity of Xt implies the impossibility of the process having finite total
variation and non-zero quadratic variation. Theorem 1 therefore implies that the total variation of a Brownian
motion is infinite. We have the following important result which proves very useful if we need to price options
when there are multiple underlying Brownian motions, as is the case with quanto options for example.

Theorem 2 (Levy’s Theorem) A continuous martingale is a Brownian motion if and only if its quadratic
variation over each interval [0, t] is equal to t.

1A sample path of a stochastic process can be viewed as a function.
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2 Stochastic Integrals

We now discuss the concept of a stochastic integral, ignoring the various technical conditions that are required
to make our definitions rigorous. In this section, we write Xt(ω) instead of the usual Xt to emphasize that the
quantities in question are stochastic.

Definition 5 A stopping time of the filtration Ft is a random time, τ , such that the event {τ ≤ t} ∈ Ft for all
t > 0.

In non-mathematical terms, we see that a stopping time is a random time whose value is part of the information
accumulated by that time.

Definition 6 We say a process, ht(ω), is elementary if it is piece-wise constant so that there exists a sequence
of stopping times 0 = t0 < t1 < . . . < tn = T and a set of Fti-measurable2 functions, ei(ω), such that

ht(ω) =
∑
i

ei(ω)I[ti,ti+1)(t)

where I[ti,ti+1)(t) = 1 if t ∈ [ti, ti+1) and 0 otherwise.

Definition 7 The stochastic integral of an elementary function, ht(ω), with respect to a Brownian motion,
Wt, is defined as ∫ T

0

ht(ω) dWt(ω) :=

n−1∑
i=0

ei(ω)
(
Wti+1

(ω)−Wti(ω)
)
. (3)

Note that our definition of an elementary function assumes that the function, ht(ω), is evaluated at the
left-hand point of the interval in which t falls. This is a key component in the definition of the stochastic
integral: without it the results below would no longer hold. Moreover, defining the stochastic integral in this
way makes the resulting theory suitable for financial applications. In particular, if we interpret ht(ω) as a trading
strategy and the stochastic integral as the gains or losses from this trading strategy, then evaluating ht(ω) at
the left-hand point is equivalent to imposing the non-anticipativity of the trading strategy, a property that we
always wish to impose.

For a more general process, Xt(ω), we have∫ T

0

Xt(ω) dWt(ω) := lim
n→∞

∫ T

0

X
(n)
t (ω) dWt(ω)

where X
(n)
t is a sequence of elementary processes that converges (in an appropriate manner) to Xt.

Example 2 We want to compute
∫ T

0
Wt dWt. Towards this end, let 0 = tn0 < tn1 < tn2 < . . . < tnn = T be a

partition of [0, T ] and define

Xn
t :=

n−1∑
i=0

Wtn
i
I[tn

i
,tn

i+1
)(t)

where I[tn
i
,tn

i+1
)(t) = 1 if t ∈ [tni , t

n
i+1) and is 0 otherwise. Then Xn

t is an adapted elementary process and, by

continuity of Brownian motion, satisfies limn→∞Xn
t = Wt almost surely as maxi |tni+1 − tni | → 0. The

2Loosely speaking, a function f(ω) is Ft measurable if its value is known by time t.
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stochastic integral of Xn
t is given by∫ T

0

Xn
t dWt =

n−1∑
i=0

Wtn
i
(Wtn

i+1
−Wtn

i
)

=
1

2

n−1∑
i=0

(
W 2
tn
i+1
−W 2

tn
i
− (Wtn

i+1
−Wtn

i
)2
)

=
1

2
W 2
T −

1

2
W 2

0 −
1

2

n−1∑
i=0

(Wtn
i+1
−Wtn

i
)2. (4)

By Theorem 1 the sum on the right-hand-side of (4) converges in probability to T as n→∞. And since
W0 = 0 we obtain ∫ T

0

Wt dWt = lim
n→∞

∫ T

0

Xn
t dWt =

1

2
W 2
T −

1

2
T.

Note that we will generally evaluate stochastic integrals using Itô’s Lemma (to be discussed later) without
having to take limits of elementary processes as we did in Example 2.

Definition 8 We define the space L2[0, T ] to be the space of processes, Xt(ω), such that

E

[∫ T

0

Xt(ω)2 dt

]
<∞.

Theorem 3 (Itô’s Isometry) For any Xt(ω) ∈ L2[0, T ] we have

E

(∫ T

0

Xt(ω) dWt(ω)

)2
 = E

[∫ T

0

Xt(ω)2 dt

]
.

Proof: (For the case where Xt is an elementary process)
Let Xt =

∑
i ei(ω)I[ti,ti+1)(t) be an elementary process where the ei(ω)’s and ti’s are as defined in Definition 6.

We therefore have
∫ T

0
Xt(ω) dWt(ω) :=

∑n−1
i=0 ei(ω)

(
Wti+1

(ω)−Wti(ω)
)
. We then have

E

(∫ T

0

Xt(ω) dWt(ω)

)2
 = E

(n−1∑
i=0

ei(ω)
(
Wti+1

(ω)−Wti(ω)
))2


=

n−1∑
i=0

E
[
e2
i (ω)

(
Wti+1

(ω)−Wti(ω)
)2]

+ 2

n−1∑
0≤i<j≤n−1

E
[
ei ej(ω)

(
Wti+1

(ω)−Wti(ω)
) (
Wtj+1

(ω)−Wtj (ω)
)]

=

n−1∑
i=0

E

e2
i (ω) Eti

[(
Wti+1

(ω)−Wti(ω)
)2]︸ ︷︷ ︸

= ti+1−ti


+ 2

n−1∑
0≤i<j≤n−1

E

ei ej(ω)
(
Wti+1(ω)−Wti(ω)

)
Etj
[(
Wtj+1(ω)−Wtj (ω)

)]︸ ︷︷ ︸
=0
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= E

[
n−1∑
i=0

e2
i (ω)(ti+1 − ti)

]

= E

[∫ T

0

Xt(ω)2 dt

]
which is what we had to show.

Theorem 4 (Martingale Property of Stochastic Integrals) The stochastic integral,

Yt :=
∫ t

0
Xs(ω) dWs(ω), is a martingale for any Xt(ω) ∈ L2[0, T ].

Exercise 2 Check that
∫ t

0
Xs(ω) dWt(ω) is indeed a martingale when Xt is an elementary process. (Hint:

Follow the steps we took in our proof of Theorem 3.)

2.1 Stochastic Differential Equations

Definition 9 An n-dimensional Itô process, Xt, is a process that can be represented as

Xt = X0 +

∫ t

0

as ds+

∫ t

0

bs dWs (5)

where W is an m-dimensional standard Brownian motion, and a and b are n-dimensional and n×m-dimensional
Ft-adapted3 processes, respectively4.

We often use the notation
dXt = at dt+ btdWt

as shorthand for (5). An n-dimensional stochastic differential equation (SDE) has the form

dXt = a(Xt, t) dt+ b(Xt, t) dWt; X0 = x (6)

where as before, Wt is an m-dimensional standard Brownian motion, and a and b are n-dimensional and
n×m-dimensional adapted processes, respectively. Once again, (6) is shorthand for

Xt = x+

∫ t

0

a(Xs, s) dt+

∫ t

0

b(Xs, t) dWs. (7)

While we do not discuss the issue here, various conditions exist to guarantee existence and uniqueness of
solutions to (7). A useful tool for solving SDE’s is Itô’s Lemma which we now discuss.

3 Itô’s Lemma

Itô’s Lemma is the most important result in stochastic calculus, the “sine qua non” of the field. We first state
and give an outline proof of a basic form of the result.

Theorem 5 (Itô’s Lemma for 1-dimensional Brownian Motion)
Let Wt be a Brownian motion on [0, T ] and suppose f(x) is a twice continuously differentiable function on R.
Then for any t ≤ T we have

f(Wt) = f(0) +
1

2

∫ t

0

f ′′(Ws) ds +

∫ t

0

f ′(Ws) dWs. (8)

3at and bt are Ft-‘adapted’ if at and bt are Ft-measurable for all t. We always assume that our processes are Ft-adapted.
4Additional technical conditions on at and bt are also necessary.
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Proof: (Sketch) Let 0 = t0 < t1 < t2 < . . . < tn = t be a partition of [0, t]. Clearly

f(Wt) = f(0) +

n−1∑
i=0

(
f(Wti+1)− f(Wti)

)
. (9)

Taylor’s Theorem implies

f(Wti+1
)− f(Wti) = f ′(Wti)(Wti+1

−Wti) +
1

2
f ′′(θi)(Wti+1

−Wti)
2 (10)

for some θi ∈ (Wti ,Wti+1
). Substituting (10) into (9) we obtain

f(Wt) = f(0) +

n−1∑
i=0

f ′(Wti)(Wti+1 −Wti) +
1

2

n−1∑
i=0

f ′′(θi)(Wti+1 −Wti)
2. (11)

If we let δ := maxi |ti+1 − ti| → 0 then it can be shown that the terms on the right-hand-side of (11) converge
to the corresponding terms on the right-hand-side of (8) as desired. (This should not be surprising as we know
the quadratic variation of Brownian motion on [0, t] is equal to t.)

A more general version of Itô’s Lemma can be stated for Itô processes.

Theorem 6 (Itô’s Lemma for 1-dimensional Itô process)
Let Xt be a 1-dimensional Itô process satisfying the SDE

dXt = µt dt+ σt dWt.

If f(t, x) : [0,∞)×R→ R is a C1,2 function and Zt := f(t,Xt) then

dZt =
∂f

∂t
(t,Xt) dt+

∂f

∂x
(t,Xt) dXt +

1

2

∂2f

∂x2
(t,Xt) (dXt)

2

=

(
∂f

∂t
(t,Xt) +

∂f

∂x
(t,Xt) µt +

1

2

∂2f

∂x2
(t,Xt) σ

2
t

)
dt +

∂f

∂x
(t,Xt) σt dWt.

3.1 The “Box” Calculus

In the statement of Itô’s Lemma, we implicitly assumed that (dXt)
2 = σ2

t dt. The “box calculus” is a series of
simple rules for calculating such quantities. In particular, we use the rules

dt× dt = dt× dWt = 0 and

dWt × dWt = dt

when determining quantities such as (dXt)
2 in the statement of Itô’s Lemma above. Note that these rules are

consistent with Theorem 1. When we have two correlated Brownian motions, W
(1)
t and W

(2)
t , with correlation

coefficient, ρt, then we easily obtain that dW
(1)
t × dW (2)

t = ρt dt. We use the box calculus for computing the
quadratic variation of Itô processes.

Exercise 3 Let W
(1)
t and W

(2)
t be two independent Brownian motions. Use Levy’s Theorem to show that

Wt := ρ W
(1)
t +

√
1− ρ2 W

(2)
t

is also a Brownian motion for a given constant, ρ.
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3.2 Some Examples

Example 3 Suppose a stock price, St, satisfies the SDE

dSt = µtSt dt+ σtSt dWt.

Then we can use the substitution, Yt = log(St) and Itô’s Lemma applied to the function5 f(x) := log(x) to
obtain

St = S0 exp

(∫ t

0

(µs − σ2
s/2) ds+

∫ t

0

σs dWs

)
. (12)

Note that St does not appear on the right-hand-side of (12) so that we have indeed solved the SDE. When
µs = µ and σs = σ are constants we obtain

St = S0 exp
(
(µ− σ2/2) t+ σ dWt

)
(13)

so that log(St) ∼ N
(
(µ− σ2/2)t, σ2t

)
.

Example 4 (Ornstein-Uhlenbeck Process)

Let St be a security price and suppose Xt = log(St) satisfies the SDE

dXt = [−γ(Xt − µt) + µ] dt + σdWt.

Then we can apply Itô’s Lemma to Yt := exp(γt)Xt to obtain

dYt = exp(γt) dXt + Xt d (exp(γt))

= exp(γt) ([−γ(Xt − µt) + µ] dt + σdWt) + Xtγ exp(γt) dt

= exp(γt) ([γµt+ µ] dt + σdWt)

so that

Yt = Y0 + µ

∫ t

0

eγs (γs+ 1) ds + σ

∫ t

0

eγs dWs (14)

or alternatively (after simplifying the Riemann integral in (14))

Xt = X0e
−γt + µt+ σe−γt

∫ t

0

eγs dWs. (15)

Once again, note that Xt does not appear on the right-hand-side of (15) so that we have indeed solved the
SDE. We also obtain E[Xt] = X0e

−γt + µt and

Var(Xt) = Var

(
σe−γt

∫ t

0

eγs dWs

)
= σ2e−2γt E

[(∫ t

0

eγs dWs

)2
]

= σ2e−2γt

∫ t

0

e2γs ds (by Itô’s Isometry)

=
σ2

2γ

(
1− e−2γt

)
.

These moments should be compared with the corresponding moments for log(St) in the previous example.

5Note that f(·) is not a function of t.


