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Introduction to Forwards
Definition: A forward contract on a security is a contract agreed upon at t = 0
to purchase or sell the security at date T for a price, F , that is specified at t = 0.

When forward contract established at t = 0, the forward price, F , is set so that
initial value of contract is f0 = 0.

At maturity value of contract is

fT := ±(ST − F)

where ST = time T value of underlying security.

Very important to realize there are two “prices" / “values" associated with a
forward contract at time t:

The forward price, F
The value of the forward contract, ft .

Note ft is generally not equal to zero for t > 0.
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Examples of Forward Contracts
Examples of forward contracts include:

A forward contract for delivery, i.e. purchase, of a stock with maturity 6
months.

A forward contract for delivery of a 9-month T-Bill with maturity 3 months.
(Upon delivery, the T-Bill will have 9 months to maturity.)

A forward contract for the sale of gold with maturity 1 year.

A forward contract for delivery of 10m Euro (in exchange for dollars) with
maturity 6 months.
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Computing Forward Prices: Zero “Storage Costs”
First consider forward contracts on securities that can be “stored” at zero cost

- and we assume short selling is allowed.

Origin of term “stored" is that of forward contracts on commodities such as gold
or oil that are costly to store.

However, can also use the term when referring to financial securities:
e.g. dividend paying stocks and coupon bonds are stored at negative cost.

Proposition: The arbitrage-free forward price, F , at t = 0 for delivery of that
security at date T is given by

F = S/d(0,T ) (1)

where S is the current spot price of the security and d(0,T ) is the discount
factor applying to the interval [0,T ].
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Computing Forward Prices: Zero “Storage Costs”
Proof: We will construct an “arbitrage portfolio” if F 6= S/d(0,T ).

Case (i): F < S/d(0,T ):
Consider the portfolio that at date t = 0 is short one unit of the security, lends S
until date T , and is long one forward contract.

Initial cost of this portfolio is 0 and it has a positive payoff, S/d(0,T )− F , at
date T .

Case (ii): F > S/d(0,T ):
Construct the reverse portfolio and again obtain an arbitrage opportunity. 2
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A Forward on a Non-Dividend Paying Stock
Example: Consider a forward contract on a non-dividend paying stock that
matures in 6 months.

Current stock price is $50 and the 6-month interest rate is 4% per annum.

Assuming semi-annual compounding, discount factor is given by
d(0, .5) = 1/1.02 = 0.9804.

Arbitrage-free forward price then satisfies

F = S/d(0,T )
= 50/0.9804 = = 51.0.
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Forward Prices When Storage Costs Are Non-Zero
Suppose now underlying security has non-zero storage costs.

Will assume a multi-period setting and that the security has a deterministic
holding cost of c(j) in period j

- payable at beginning of the period.

For a commodity, c(j) will generally represent a true (and positive) holding cost.

For a stock or bond, c(j) will be a negative cost and represent a dividend or
coupon payment.

Proposition: The arbitrage-free forward price, F , for delivery of the security in
M periods time satisfies

F = S
d(0,M ) +

M−1∑
j=0

c(j)
d(j,M ) (2)

where S is the current spot price of the security and d(j,M ) is the discount
factor for borrowing / lending between dates j and M . 2
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Forward Prices When Storage Costs Are Non-Zero
Proof: Consider strategy of buying one unit of the security on the spot market at
t = 0, and simultaneously entering a forward contract to deliver it at time T .

Cash-flow associated with this strategy is

(−S − c(0),−c(1), . . . ,−c(j), . . . ,−c(M − 1), F)

and its present value must (why?) be equal to zero.

Since the cash-flow is deterministic we know how to compute its present value
and we easily obtain (2).
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E.G. Pricing a Forward Contract on a Bond
Consider a forward contract on a 4-year bond with maturity 1 year. Current value
of bond is $1018.86, face value is $1000 and coupon rate is 10% per annum.

A coupon has just been paid and further coupons will be paid after 6 months and
after 1 year, just prior to delivery.

Interest rates for 1 year out are flat at 8%.

Note that here the storage costs, i.e. the coupon payments, are paid at the end
of the period, which has length 6 months.

Therefore need to adjust (2) slightly to obtain

F = S
d(0,M ) +

M−1∑
j=0

c(j)
d(j + 1,M ) .

So forward price given by

F = 1018.86
d(0, 2) −

50
d(1, 2) − 50

where d(0, 2) = 1.04−2 and d(1, 2) = d(0, 2)/d(0, 1) = 1.04−1.
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Value of a Forward Contract When t > 0
Recall that by construction the value of a forward contract satisfies f0 = 0.

Proposition: Let Ft be the current forward price at date t for delivery of the
same security at the same maturity date, T . We then have

ft = (Ft − F0) d(t,T ). (3)

Proof: Consider a portfolio that at date t goes long one unit of a forward
contract with price Ft and maturity T , and short one unit of a forward contract
with price F0 and maturity T .

This portfolio has a deterministic cash-flow of F0 − Ft at date T and a
deterministic cash-flow of ft at date t.

Present value at date t of this cash-flow stream, (ft , F0 − Ft) must be zero
(why?) and hence we obtain (3).
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Plain Vanilla Interest Rate Swaps
Have a maturity T , a notional principal P, and a fixed number of periods
M .

Two counter-parties: A and B.

In each period party A makes a payment to party B corresponding to a fixed
rate of interest on P.

Similarly, in every period party B makes a payment to party A that
corresponds to a floating rate of interest on the same notional principal, P.

Note the principal itself is never exchanged.

Must also specify whether payments occur at end or beginning of each
period.
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Plain Vanilla Interest Rate Swaps
e.g. Assume cash payments are made at the end of each period, i.e. in arrears.

Then total aggregate cash flow from party A’s perspective is

C = P × (0, r0 − rf︸ ︷︷ ︸
At end of 1st period

, . . . , rM−1 − rf︸ ︷︷ ︸
At end of M th period

)

rf = (constant) fixed rate
ri = floating rate, i.e. the rate that prevailed at beginning of period i.

In general, ri stochastic and so swap’s cash-flow, C , also stochastic.

Fixed rate rf usually chosen so that initial value of swap is zero.

Even though initial value is zero, say party A is “long" and party B is “short".

3



Pricing the Vanilla Interest-Rate Swap
The cash flow C , can be decomposed into:

1. A series of fixed payments, P × (0, rf , rf , . . . , rf )
- easily priced.

2. A stochastic stream, P × (0, r0, r1, . . . , rM−1).

Can value the stochastic stream by noting / recalling that price of a floating rate
bond is always par at any reset point:
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Pricing the Vanilla Interest-Rate Swap
Note that stochastic stream is exactly the stream of coupon payments
corresponding to a floating rate bond with face value P.

Hence value of stochastic stream must be (why?) P(1− d(0,M )) and so value
of swap is given by

V = P
[

1− d(0,M )− rf

M∑
i=1

d(0, i)
]
. (4)
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Pricing A Commodity Swap
Let Si = spot price of a commodity at beginning of period i.

Party A receives the spot price for N units of the commodity and pays a fixed
amount, X , per period.

Will assume that payments take place at beginning of each period and there will
be a total of M payments, beginning one period from now.

Cash-flow as seen by party that is long the swap is

C = N × (0, S1 −X , S2 −X , . . . , SM −X) .

But C is stochastic and so cannot compute its present value directly by
discounting.
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Pricing A Commodity Swap
But can decompose C into:

1. A stream of fixed payments −N × (0, X , X , . . . ,X)
- easily priced.

2. A stochastic stream, N × (0, S1, S2, . . . , SM ).

But receiving N × Si at period i has same value as receiving N × Fi at period i
where Fi = date 0 forward price for delivery of commodity at date i.

So stochastic stream easily seen to be equivalent to a stream of forward contacts
on N units of the commodity.
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Pricing A Commodity Swap
Since the Fi ’s are deterministic and known at date 0, value of commodity swap is
given by

V = N
M∑

i=1
d(0, i)(Fi −X).

X is usually chosen so that the initial value of V is zero.
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A Perfect Hedge
Example: A wheat producer knows he will have 100, 000 bushels of wheat
available to sell in three months time.

He is concerned the spot price of wheat will move against him, i.e. fall, in the
meantime.

So he decides to lock in the sale price now by hedging in the futures markets.

Each wheat futures contract is for 5, 000 bushels, so he decides to sell 20
three-month futures contracts.

Note that as a result, the wheat producer has a perfectly hedged position.
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Perfect Hedges
In general, perfect hedges are not available for a number of reasons:

1. None of the expiration dates of available futures contracts may exactly
match the expiration date of the payoff, PT , that we want to hedge.

2. PT may not correspond exactly to an integer number of futures contracts.

3. The security underlying the futures contract may be different to the security
underlying PT .

4. PT may be a non-linear function of the security price underlying the futures
contract.

5. Combinations of all the above are also possible.

When perfect hedges are not available can use the minimum-variance hedge.
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Constructing Minimum-Variance Hedges
Let ZT = date T cash flow that we wish to hedge and let Ft = time t price of
futures contract.

At date t = 0 we adopt a position of h in the futures contract and hold this
position until time T .

Since initial cost of a futures position is zero, can write terminal cash-flow as

YT = ZT + h(FT − F0).

Our objective then is to minimize

Var(YT) = Var(ZT) + h2Var(FT) + 2hCov(ZT , FT)
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Constructing Minimum-Variance Hedges
Find that minimizing h and minimum variance are given by

h∗ = − Cov(ZT ,FT)
Var(FT)

Var(Y ∗
T) = Var(ZT) − Cov(ZT , FT)2

Var(FT) .

Such static hedging strategies are often used in practice
- but dynamic hedging strategies are capable of achieving a smaller variance.
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Hedging Operating Profits
Example: A firm manufactures a particular type of widget and has orders to
supply D1 and D2 of these widgets at dates t1 and t2, respectively.

The revenue, R, of the firm may then be written as

R = D1P1 + D2P2

where Pi represents the price per widget at time ti .

Pi is stochastic and will depend in part on general state of economy at date ti .

We assume
Pi = aSi eεi + c

where a and c are constants, Si = time ti value of market index, and ε1 and ε2
are independent random variables that are also independent of Si .
Also assume that E[eεi ] = 1 for each i.
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Hedging Operating Profits
The firm wishes to hedge the revenue, R, by taking a position h at t = 0 in a
futures contract that expires at date t2 and where the market index is the
underlying security.

Ignoring the time value of money, the date t2 payoff, Y , is then given by

Y = D1 (aS1 eε1 + c) + D2 (aS2 eε2 + c) + h(S2 − F0).

If St is a geometric Brownian motion so that

St = S0 exp
(
(µ− σ2/2)t + σBt

)
where Bt is a standard Brownian motion, then can easily find the minimum
variance hedge, h∗ = −Cov(R,S2)/Var(S2).

Question: Can you construct more sophisticated hedging strategies?
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Introduction to Options
Definition: A European call option gives the right but not the obligation to
purchase 1 unit of the underlying security at a pre-specified price, K , at a
pre-specified time T .

Definition: An American call option gives the right but not the obligation to
purchase 1 unit of the underlying security at a pre-specified price K at any time
up to and including a pre-specified time T .

Definition: A European put option gives the right but not the obligation to sell
1 unit of the underlying security at a pre-specified price K at a specified time T .

Definition: An American put option gives the right but not the obligation to sell
1 unit of the underlying security at a pre-specified price K at any time up to and
including a pre-specified time T .

K and T are called the strike and maturity / expiration, respectively.
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Payoff and Intrinsic Value of European Call and Puts

Payoff of a European call option at expiration = max{ST −K , 0}

Intrinsic value of a call option at time t ≤ T is max{St −K , 0}

In the money: St > K
At the money: St = K
Out of the money: St < K

Payoff of a European put option at expiration = max{K − ST , 0}

Intrinsic value of a put option at time t ≤ T is max{K − St , 0}

In the money: St < K
At the money: St = K
Out of the money: St > K

Options have nonlinear payoff so cannot price them without a model for the
underlying security – but important results still available!
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Put-Call Parity
Let pE(t; K ,T ) and cE(t; K ,T ) denote prices of European put and call.
Let pA(t; K ,T ) and cA(t; K ,T ) denote prices of American put and call.

Theorem: European put-call parity at time t for non-dividend paying stock:

pE(t; K ,T ) + St = cE(t; K ,T ) + Kd(t,T )

Proof: Consider following trading strategy:

At time t buy European call with strike K and expiration T
At time t sell European put with strike K and expiration T
At time t (short) sell 1 unit of underlying and buy at time T
At time t lend d(t,T )K dollars until time T
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Bounds on European Option Prices
Suppose underlying security does not pay dividends.

Suppose also the events {ST > K} and {ST < K} have strictly positive
probability – a very reasonable assumption.

Can then use put-call parity to obtain

cE(t; K ,T ) = St + pE(t; K ,T )−Kd(t,T )
> St −Kd(t,T ). (5)

Consider now corresponding American call option:
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Bounds on European Option Prices
So price of American call on a non-dividend paying stock always strictly greater
than intrinsic value when events {ST > K} and {ST < K} have strictly positive
probability

- have shown it’s never optimal to early-exercise an American call on a
non-dividend paying stock so cA(t; K ,T ) = cE(t,K ,T )

No such result holds for American put options.
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The 1-Period Binomial Model

t = 0 t = 1

aS0 = 100
hhhhhhhhhhh

��
��

��
��

��
�a 107 = uS0

a 93.46 = dS0

p

1 − p

Can borrow or lend at gross risk-free rate, R
- so $1 in cash account at t = 0 is worth $R at t = 1

Also assume that short-sales are allowed.
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Type A and Type B Arbitrage
Need more general definitions of arbitrage when we introduce randomness.

Definition: A type A arbitrage is a security or portfolio that produces immediate
positive reward at t = 0 and has non-negative value at t = 1.
i.e. a security with initial cost, V0 < 0, and time t = 1 value V1 ≥ 0.

Definition: A type B arbitrage is a security or portfolio that has a non-positive
initial cost, has positive probability of yielding a positive payoff at t = 1 and zero
probability of producing a negative payoff then.
i.e. a security with initial cost V0 ≤ 0, and V1 ≥ 0 but V1 6= 0.
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Arbitrage in the 1-Period Binomial Model

t = 0 t = 1

aS0 hhhhhhhhhh

��
��

��
��

��
a uS0

a dS0

p

1 − p

Recall we can borrow or lend at gross risk-free rate, R, per period.
And short-sales are allowed.

Theorem: There is no arbitrage if and only if d < R < u.
Proof: Suppose not the case that d < R < u. Then have 2 possibilities:
(i) R ≤ d < u: Then at t = 0 borrow S0 and buy the stock.
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Arbitrage in the 1-Period Binomial Model

t = 0 t = 1

aS0 hhhhhhhhhh

��
��

��
��

��
a uS0

a dS0

p

1 − p

(ii) d < u ≤ R: Then short-sell one unit of stock at t = 0 and invest proceeds in
cash-account.

Will soon see other direction, i.e. if d < R < u, then there can be no-arbitrage.
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Option Pricing in the 1-Period Binomial Model

t = 0 t = 1

aS0 = 100
hhhhhhhhhhh

��
��

��
��

��
�a 107

a 93.46

p

1 − p

Assume now that R = 1.01.

1. How much is a call option that pays max(S1 − 102, 0) at t = 1 worth?
2. How will the price vary as p varies?

To answer these questions, we will construct a replicating portfolio.
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The Replicating Portfolio
Consider buying x shares and investing $y in cash at t = 0
At t = 1 this portfolio is worth:

107x + 1.01y when S = 107
93.46x + 1.01y when S = 93.46

Can we choose x and y so that portfolio equals option payoff at t = 1?
If so, then we must solve

107x + 1.01y = 5
93.46x + 1.01y = 0

The solution is

x = 0.3693
y = −34.1708

So yes, we can construct a replicating portfolio!
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The Replicating Portfolio
Question: What does a negative value of y mean?

Question: What would a negative value of x mean?

The cost of this portfolio at t = 0 is

0.3693× 100− 34.1708× 1 ≈ 2.76

So the fair value of the option is 2.76
- indeed 2.76 is the arbitrage-free value of the option.

Therefore option price does not directly depend on buyer’s (or seller’s) utility
function or (apparently) the true probabilities, p and 1− p, of up- and
down-moves, respectively.
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Derivative Security Pricing

t = 0 t = 1

aS0 hhhhhhhhhh

��
��

��
��

��
a uS0 Cu

a dS0 Cd

p

1 − p

C1(S1)

Can use same replicating portfolio argument to find price, C0, of any
derivative security with payoff function, C1(S1), at time t = 1.
Set up replicating portfolio as before:

uS0x + Ry = Cu (6)
dS0x + Ry = Cd (7)

Solve for x and y as before and then must have C0 = xS0 + y.
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Derivative Security Pricing
After solving (6) and (7) can easily check(!)

C0 = 1
R

[
R − d
u − d Cu + u − R

u − d Cd

]
= 1

R [qCu + (1− q)Cd ]

= 1
REQ

0 [C1]. (8)

Note that if d < R < u then q > 0 and 1− q > 0 and (8) implies (why?)
there can be no-arbitrage

- we refer to (8) risk-neutral pricing
- and (q, 1 − q) are the risk-neutral probabilities.

So we now know how to price any derivative security in this 1-period model.
Can also answer earlier question: “How does the option price depend on p?”

- but is the answer crazy?!
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What’s Going On?
Stock ABC

t = 0 t = 1

aS0 = 100
hhhhhhhhh

��
��

��
��
�a 110

a 90

p = .99

1 − p = .01

Stock XYZ

t = 0 t = 1

aS0 = 100
hhhhhhhhh

��
��

��
��
�a 110

a 90

p = .01

1 − p = .99

Question: How does the price of a call option on ABC with strike K = $100
compare to the price of a call option on XYZ with strike K = $100?
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A 3-period Binomial Model
Let R = 1.01 and u = 1/d = 1.07.

��
��

��
��

��
��

��
�

PPPPPPPPPPPPPPP

PPPPPPPPPP��
��

��
��

��

PPPPP

��
��

�

t = 0 t = 1 t = 2 t = 3

100

107

114.49

122.5

100

107

93.46 93.46

87.34

81.63

Just a series of 1-period models spliced together!
- all the results from the 1-period model apply
- just need to multiply 1-period probabilities along branches to get

probabilities in multi-period model.
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Pricing a European Call Option
Assumptions: expiration at t = 3, strike = $100 and R = 1.01.
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114.49

122.50

100
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93.46 93.46

87.34

81.63
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0
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Pricing a European Call Option
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100
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114.49

122.50

100
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15.48

3.86

0

10.23

2.13
6.57
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Pricing a European Call Option
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t = 0 t = 1 t = 2 t = 3

100

107

114.49

122.50

Q

100
107

93.46 93.46
87.34

81.63

22.5

7

0

0

15.48

3.86

0

10.23

2.13
6.57

(1 − q)3

q3

3q2(1 − q)

3q(1 − q)2

But can also calculate the price directly:
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Pricing American Options
Can also price American options in same way as European options

– but must also check if it’s optimal to early exercise at each node.

But recall never optimal to early exercise an American call option on
non-dividend paying stock.

Example: Price American put: expiration at t = 3, K = $100 and R = 1.01.
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114.49
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0
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18.37
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Pricing American Options

��
��
��

��
��

��
��

���

PPPPPPPPPPPPPPPPP

PPPPPPPPPPPP��
��

��
��

��
��

PPPPPP

��
��

��
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100

107

114.49

122.50
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93.46 93.46

87.34

81.63

0

0

6.54

18.37

2.87

0

7.13

1.26

3.82

12.66
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Including Dividends

t = 0 t = 1

aS0 hhhhhhhhhh

��
��

��
��

��
auS0 + cS0 Cu

a dS0 + cS0 Cd

p

1 − p

C1(S1)

Consider again 1-period model and assume stock pays a proportional
dividend of cS0 at t = 1.

No-arbitrage conditions are now d + c < R < u + c.
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Including Dividends

t = 0 t = 1

aS0 hhhhhhhhhh

��
��

��
��

��
auS0 + cS0 Cu

a dS0 + cS0 Cd

p

1 − p

C1(S1)

Can use same replicating portfolio argument to find price, C0, of any
derivative security with payoff function, C1(S1), at time t = 1.

Set up replicating portfolio as before:

uS0x + cS0x + Ry = Cu (9)
dS0x + cS0x + Ry = Cd (10)

Solve for x and y as before and then must have C0 = xS0 + y.
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Derivative Security Pricing with Dividends
Solving (9) and (10) we obtain:

C0 = 1
R

[
R − d − c

u − d Cu + u + c − R
u − d Cd

]
(11)

= 1
R [qCu + (1− q)Cd ]

= 1
REQ

0 [C1].

So once again, we can price any derivative security in this 1-period model with
dividends!
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Multi-Period Binomial Model with Dividends
Multi-period binomial model assumes a proportional dividend in each period

- so dividend of cSi is paid at t = i + 1 for each i.

Then each embedded 1-period model has identical risk-neutral probabilities
- and derivative securities priced as before.

In practice dividends are not paid in every period
- and are therefore just a little more awkward to handle.
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