
Foundations of Financial Engineering
The Black-Scholes Model

Martin B. Haugh
Department of Industrial Engineering and Operations Research

Columbia University



The Black-Scholes Model
Will derive the Black-Scholes PDE for a call-option on a non-dividend paying
stock with strike K and maturity T .

Assume stock price follows a GBM:

dSt = µSt dt + σSt dWt (1)

where Wt is a standard Brownian motion.

Also assume that continuously compounded interest rate is a constant, r
- so 1 unit invested in cash account at t = 0 worth Bt := ert at time t.

By Itô’s lemma know that

dC (S , t) =
(
µSt

∂C
∂S + ∂C

∂t + 1
2σ

2S2 ∂
2C
∂S2

)
dt + σSt

∂C
∂S dWt (2)

- where we use C (S , t) to denote time t call option price.
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The Black-Scholes Model
Consider now a self-financing (s.f.) trading strategy where at each time t we hold
xt units of the cash account and yt units of the stock.

Then time t value of this strategy is

Pt = xtBt + ytSt . (3)

Will choose xt and yt so that the strategy replicates the value of the option.

The s.f. assumption implies

dPt = xt dBt + yt dSt (4)
= rxtBt dt + yt (µSt dt + σSt dWt)
= (rxtBt + ytµSt) dt + ytσSt dWt . (5)

Note that (4) is consistent with definition of s.f. in discrete-time models.
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The Black-Scholes Model
Let’s equate terms in (2) with corresponding terms in (5) to obtain

yt = ∂C
∂S (6)

rxtBt = ∂C
∂t + 1

2σ
2S2 ∂

2C
∂S2 . (7)

If we set C0 = P0 then must be the case that Ct = Pt for all t since C and P
now have identical dynamics.

Substituting (6) and (7) into (3) we obtain the Black-Scholes PDE:

rSt
∂C
∂S + ∂C

∂t + 1
2σ

2S2 ∂
2C
∂S2 − rC = 0 (8)

In order to solve (8) boundary conditions must also be provided.

In the case of our call option those conditions are:
C (S ,T ) = max(S −K , 0), C (0, t) = 0 for all t and C (S , t)→ S as
S →∞.
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The Black-Scholes Solution
Solution to (8) (in the call option case) is

C (S , t) = StΦ(d1) − e−r(T−t)KΦ(d2) (9)

where d1 =
log
(St

K
)

+ (r + σ2/2)(T − t)
σ
√

T − t
and d2 = d1 − σ

√
T − t

and Φ(·) is the standard normal CDF.

One way to confirm (9) is to compute the various partial derivatives using (9),
substitute them into (8) and check that (8) holds.

The price of a European put-option can also now be easily computed from
put-call parity and (9).
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The Black-Scholes Solution
The most interesting feature of the Black-Scholes PDE (8) is that µ does not
appear anywhere!

- hence the name risk-neutral pricing.
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The Volatility Surface
The Black-Scholes model is elegant but it does not perform well in practice:

Well known that stock prices can jump and do not always move in
continuous manner predicted by GBM
Stock prices also tend to have fatter tails than predicted by GBM.
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The Volatility Surface
If B-S model correct then should have a flat implied volatility surface.

The volatility surface defined implicitly by

C (S ,K ,T ) := BS (S ,T , r , q,K , σ(K ,T )) (10)

where C (S ,K ,T ) = current market price of call option and BS(·) = B-S price.

There will always (why?) be a unique solution, σ(K ,T ), to (10).

If B-S model correct then volatility surface would be flat with σ(K ,T ) = σ.

In practice, however, volatility surface is not flat and it actually moves randomly
in time.
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Arbitrage Constraints on the Volatility Surface
Shape of volatility surface is constrained by absence of arbitrage requirement:

1. Must have σ(K ,T ) ≥ 0 for all strikes K and expirations T .

2. At any given maturity, T , the skew cannot be too steep
- otherwise put spread arbitrage will exist.

To see this, fix a maturity T and consider put options with strikes K1 < K2.

If no arbitrage then must be the case (why?) that P(K1) < P(K2).

However, if skew is too steep then would obtain (why?) P(K1) > P(K2).
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Calendar Spread Arbitrage

3. Likewise the term structure of implied volatility cannot be too inverted
- otherwise calendar spread arbitrages will exist.

Most easily seen in the case where r = q = 0.

So fix a strike K and let Ct(T ) denote time t price of a call option with strike K
and maturity T .

Martingale pricing then implies St is a Q-martingale and (St −K )+ is a
Q-“submartingale”.

“Standard” martingale results imply Ct(T ) = EQ
t [(ST −K )+] must be

non-decreasing in T
- would be violated (why?) if term structure of implied volatility too inverted.
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Why is there a Skew?
For stocks and stock indices there is generally a skew so that for any fixed
maturity, T , the implied volatility decreases with the strike, K .

Most pronounced at shorter expirations for two reasons:
1. Risk aversion – can appear in many guises:

(i) Stocks do not follow GBM but instead often jump. Jumps to downside tend
to be larger and more frequent than jumps to upside.

(ii) As markets go down, fear sets in and volatility goes up.
(iii) Supply and demand: investors like to protect their portfolio by purchasing

OTM puts so there is more demand for options with lower strikes.

2. The leverage effect. Based on fact that total value of company assets is a
more natural candidate to follow GBM.
In this case equity volatility should increase as equity value decreases.
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The Leverage Effect
Let V , E and D denote value of firm, firm’s equity and firm’s debt.

Then fundamental accounting equation states V = D + E .

Let ∆V , ∆E and ∆D be change in values of V , E and D.

Then V + ∆V = (E + ∆E) + (D + ∆D) so that

V + ∆V
V = E + ∆E

V + D + ∆D
V

= E
V

(
E + ∆E

E

)
+ D

V

(
D + ∆D

D

)
. (11)
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The Leverage Effect
If equity component is substantial so that debt is not too risky, then (11) implies

σV ≈
E
V σE

where σV and σE are the firm value and equity volatilities.

Therefore have
σE ≈

V
E σV . (12)
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The Leverage Effect
Example: Suppose V = 1, E = .5 and σV = 20%

- then (12) implies σE ≈ 40%.

Suppose σV remains unchanged but that firm loses 20% of its value over time.

Almost all of this loss is borne by equity so (12) now implies σE ≈ 53%.

σE has therefore increased despite the fact that σV has remained constant!

Remark: There was little or no skew in market before Wall Street crash of 1987
- but then the market woke up to the flaws of GBM!
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What the Volatility Surface Tells Us
Recall the volatility surface is constructed from European option prices.

Consider a butterfly strategy centered at K where you are:

1. long a call option with strike K −∆K
2. long a call with strike K + ∆K
3. short 2 call options with strike K

Value of butterfly at time t = 0 is

B0 = C (K −∆K ,T )− 2C (K ,T ) + C (K + ∆K ,T )
≈ e−rT Prob(K −∆K ≤ ST ≤ K + ∆K )×∆K/2
≈ e−rT f (K ,T )× 2∆K ×∆K/2
= e−rT f (K ,T )× (∆K )2

where f (K ,T ) is the (risk-neutral) PDF of ST evaluated at K .
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What the Volatility Surface Tells Us
Therefore have

f (K ,T ) ≈ erT C (K −∆K ,T )− 2C (K ,T ) + C (K + ∆K ,T )
(∆K )2 . (13)

Letting ∆K → 0 in (13), we obtain

f (K ,T ) = erT ∂2C
∂K2 .

Volatility surface therefore gives the marginal risk-neutral distribution of the
stock price, ST , for any time, T .

It tells us nothing about the joint distributions of the stock price at multiple
times (ST1 , . . . ,STn )

- not surprising as volatility surface is constructed from European option
prices and they only depend on marginal distributions of ST .
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Same Marginals But Different Joint Distributions
There are two times, T1 and T2, of interest and a non-dividend paying security A
has risk-neutral dynamics that satisfy

SA
T1

= e(r−σ2/2)T1+σ
√

T1 ZA
1 (14)

SA
T2

= e(r−σ2/2)T2+σ
√

T2
(
ρAZA

1 +
√

1−ρ2
AZA

2

)
(15)

where ZA
1 and ZA

2 are independent N(0, 1) random variables.

A value of ρA > 0 can capture a momentum effect and a value of ρA < 0
captures a mean-reversion effect.

Suppose now there is another non-dividend paying security B with risk-neutral
distributions given by

SB
T1

= e(r−σ2/2)T1+σ
√

T1 ZB
1 (16)

SB
T2

= e(r−σ2/2)T2+σ
√

T2
(
ρBZB

1 +
√

1−ρ2
BZB

2

)
(17)

where ZB
1 and ZB

2 are again independent N(0, 1) random variables.
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Same Marginals But Different Joint Distributions
Observation: If Z1 and Z2 are independent N(0,1) random variables then for any
ρ ∈ [−1, 1]

ρZ1 +
√

1− ρ2Z2 ∼ N(0, 1)

Therefore see that:
SA

T1
and SB

T1
have the same marginal risk-neutral distributions.

SA
T2

and SB
T2

have the same marginal risk-neutral distributions.

Therefore follows that options on A and B with same strike and maturity must
have same price

- so A and B have identical “volatility surfaces”.
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Same Marginals But Different Joint Distributions
Example: Now consider a knock-in put option with strike 1 and expiration T2.

In order to “knock-in”, stock price at time T1 must exceed barrier price of 1.2.

Payoff function therefore given by

Payoff = max (1− ST2 , 0) 1{ST1≥1.2}.

Question: Would the knock-in put option on A have the same price as the
knock-in put option on B?

6



Same Marginals But Different Joint Distributions
Question: How does your answer depend on ρA and ρB?

Question: What does this say about the ability of the volatility surface to price
barrier options?
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Put-Call Parity
The “Greeks” measure the sensitivity of the option price to changes in various
parameters.

The Greeks are usually computed using the B-S formula
- despite fact that B-S model known to be a poor approximation to reality.

But first recall put-call parity:

e−rT K + Call Price = e−qT S + Put Price. (18)

where call and put have same strike K , and maturity T , and q = dividend yield.

Put-call parity very useful for:

1. Calculating Greeks. e.g. it implies that Vega(Call) = Vega(Put)

2. For calibrating dividends or borrow rate

3. Constructing the volatility surface.
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The Greeks: Delta
Definition: The delta of an option is the sensitivity of the option price to a
change in the price of the underlying security.

Delta of a European call option (in B-S model) is

delta = ∂C
∂S = e−qT Φ(d1).

– the “usual” delta corresponding to a volatility surface that is sticky-by-strike
- assumes volatility of option does not move when underlying price moves.

If volatility of option did move then delta would have an additional term of the
form vega× ∂σ(K ,T )/∂S

- in this case would say that the volatility surface was sticky-by-delta.

In following figures we assumed r = q = 0 and K = 100.
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The Greeks: Delta
By put-call parity, have

deltaput = deltacall − e−qT .

Note that delta becomes steeper around K when time-to-maturity decreases.

Note also that

deltacall = Φ(d1)

is often interpreted as (risk-neutral) probability of option expiring in the money

- this probability is in fact equal to Φ(d2).
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The Greeks: Gamma
Definition: The gamma of an option is the sensitivity of the option’s delta to a
change in the price of the underlying security.

The gamma of a call option satisfies

gamma = ∂2C
∂S2 = e−qT φ(d1)

σS
√

T

where φ(·) is the standard normal PDF.

By put-call parity, gamma of European call = gamma of European put with same
strike and maturity.

Gamma always positive due to option convexity and traders who are long gamma
can make money by gamma scalping

- process of regularly re-balancing option portfolio to be delta-neutral.

However, must pay for this long gamma position with the option premium!
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Gamma Scalping
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The Greeks: Vega
Definition: The vega of an option is the sensitivity of the option price to a
change in volatility.

The vega of a call option satisfies

vega = ∂C
∂σ

= e−qTS
√

T φ(d1).

Put-call parity implies vega of European call = vega of European put with same
strike and maturity.

In following figures we assumed K = 100 and that r = q = 0.

Question: Why does vega increase with time-to-maturity?

Question: For a given time-to-maturity, why is vega peaked near the strike?
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The Greeks: Theta
Definition: The theta of an option is the sensitivity of the option price to a
negative change in time-to-maturity.

The theta of a call option satisfies

theta = −∂C
∂T = −e−qTSφ(d1) σ

2
√

T
+ qe−qTSΦ(d1)− rKe−rTΦ(d2).

In following figures have assumed r = q = 0% and K = 100.

Note that call option’s theta is always negative (in these figures).
Can you explain why this is the case?

Question: Why does theta become more negatively peaked as time-to-maturity
decreases?
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Still have q = 0 but now r = 10%. Note theta positive for ITM put. Why?
Can also obtain positive theta for call options when q is large.
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Delta-Gamma-Vega Approximations to Option Prices

A simple application of Taylor’s Theorem yields

C (S + ∆S , σ + ∆σ) ≈ C (S , σ) + ∆S ∂C
∂S + 1

2 (∆S)2 ∂
2C
∂S2 + ∆σ∂C

∂σ

= C (S , σ) + ∆S × δ + 1
2 (∆S)2 × Γ + ∆σ × vega

where C (S , σ) = price of a derivative security as a function of S and σ.

Therefore obtain

P&L = δ∆S + Γ
2 (∆S)2 + vega ∆σ

= delta P&L + gamma P&L + vega P&L
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Delta-Gamma-Vega Approximations to Option Prices

When ∆σ = 0, obtain the well-known delta-gamma approximation

- often used in historical Value-at-Risk (VaR) calculations for portfolios that
include options.

Can also write

P&L = δS
(

∆S
S

)
+ ΓS2

2

(
∆S
S

)2
+ vega ∆σ

= ESP× Return + $ Gamma× Return2 + vega ∆σ

where ESP denotes the equivalent stock position or “dollar” delta.
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Delta-Hedging
Delta-hedging is act of re-balancing a portfolio continuously so that always have
a total “delta” of zero

- in fact we obtained B-S PDE via a delta-hedging / replication argument.

Not practical of course to hedge continuously
- so instead we hedge periodically – results in some replication error.

Let Pt = time t value of discrete-time s.f. strategy that attempts to replicate the
option payoff.

Let C0 = initial value of the option.
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Delta-Hedging
Replicating strategy then given by

P0 := C0 (19)
Pti+1 = Pti + (Pti − δti Sti ) r∆t + δti

(
Sti+1 + qSti ∆t − Sti

)
(20)

∆t := ti+1 − ti is the length of time between re-balancing
r = annual risk-free interest rate (assuming per-period compounding)
δti is the B-S delta at time ti

q is the dividend yield.

Note that (19) and (20) respect the s.f. condition.
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Delta-Hedging
Recall δti satisfies

δti = ∂C
∂S = e−q(T−t) Φ(d1)

where

d1 :=
log
(

Sti
K

)
+ (r + σ2

imp/2)(T − ti)

σimp
√

T − ti

Stock prices are simulated assuming St ∼ GBM(µ, σ) so that

St+∆t = St e(µ−σ2/2)∆t +σ
√

∆t Z

where Z ∼ N(0, 1).

Note that σimp need not equal σ!

This has interesting implications for trading P&L which we define as

P&L := PT − (ST −K )+

in the case of a short position in a call option with strike K and maturity T .
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Delta-Hedging
Many interesting questions now arise:

Question: If you sell options, what typically happens the total P&L if σ < σimp?

Question: If you sell options, what typically happens the total P&L if σ > σimp?

Question: If σ = σimp what typically happens the total P&L as the number of
re-balances increases?

Recall that fair price of an option increases as the volatility increases.

Therefore if σ > σimp we expect to lose money on average when we delta-hedge
an option that we sold.

Similarly, we expect to make money when we delta-hedge if σ < σimp.

In general the payoff from delta-hedging an option is path-dependent.
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Some Answers to Delta-Hedging Questions
Can be shown that payoff from continuously delta-hedging an option satisfies

P&L =
∫ T

0

S2
t
2
∂2Ct

∂S2

(
σ2

imp − σ2
t
)

dt (21)

where σt is the realized instantaneous volatility at time t.

Recall the dollar gamma term S2
t

2
∂2Ct
∂S2 :

- always positive for a call or put option
- but it goes to zero as the option moves significantly into or out of the money.

Returning to s.f. trading strategy of (19) and (20), note that we can choose any
model we like for the security price dynamics

- interesting to see what happens when we depart from GBM dynamics!
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