IEOR E4706 Foundations of Financial Engineering Martin Haugh

Assignment 8 (Mandatory)

1. (Pricing a CDS in a Structural Model)

- (a) Replicate the equity and debt lattices on page 3 of the *Credit Modeling and Credit Derivatives* lecture notes. These lattices give the price processes for the debt and equity components of the capital structure under the Black-Cox default framework. (You will of course need to first construct the firm value lattice as given on page 2 of the lecture notes.)
- (b) Consider a CDS on the debt component of part (a) where the premium leg makes a payment in every period and the default leg pays the difference between the face value of the bond, i.e. \$800, and the firm value upon default. Use separate lattices to compute the time t = 0 value of the premium and default legs. Now use trial and error to determine the fair dollar premium per period.

2. (Estimating Ratings Transitions)

Consider the ratings models as described in Section 2 of the *Credit Modeling and Credit Derivatives* lecture notes. Given empirical transitions data, how should we estimate, for example, the 1-year transition matrix \mathbf{P} ? There are a few approaches and we will consider two of them here. In order to simplify matters let us assume that there are just four possible ratings, A, B, C and D (default). In addition we have the following data from the past year:

- At the beginning of the year, there were 10 firms in each of the four classes.
- In the 1st month, one *B*-rated firm migrated to a *C*-rating and one *B*-rated firm migrated to an *A*-rating.
- In the 2^{nd} month, two A-rated firms migrated to a B-rating.
- In the 6th month, one C-rated firm migrated to a B-rating and one C-rated firm migrated to a D-rating.
- In the 8th month, one C-rated firm migrated to a D-rating.
- There were no other transitions during the year.

In the following questions you can assume that transitions took place at the *end* of the month in question.

(a) What is $\widehat{\mathbf{P}}_{emp}$, the empirical estimator of \mathbf{P} that we obtain by simply counting the empirical transitions between ratings in the given data-set?

(b) An alternative estimator is based on the so-called *generator* matrix, Λ , of the Markov chain. The generator matrix for a Markov chain with n states has the form

$$\Lambda = \begin{pmatrix} -\lambda_{1,1} & \lambda_{1,2} & \cdots & \lambda_{1,n} \\ \lambda_{2,1} & -\lambda_{2,2} & \cdots & \lambda_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{n,1} & \lambda_{n,2} & \cdots & -\lambda_{n,n} \end{pmatrix}$$

Note that each row in Λ sums to 0. Moreover, $\lambda_{i,j}$ for $i \neq j$, represents the transition rate from state *i* to state *j*. We can estimate it according to

$$\hat{\lambda}_{i,j} = \frac{M_{i,j}}{N_i}$$

where N_i is the total number (across all firms) of time units spent in state *i* and $M_{i,j}$ is the total number of transitions from *i* to *j*. Using the data-set given above, we would estimate

$$\hat{\lambda}_{A,B} = \frac{2}{8 \times \frac{12}{12} + 2 \times \frac{2}{12} + 1 \times \frac{11}{12}}.$$
(1)

Note that the time unit here is "years" and a term such as $\frac{2}{12}$ in the denominator of (1) corresponds to 2 months = $\frac{2}{12}$ of a year. The final piece we need is a well-known and very important property of Λ is that it can be used to determine the *m*-step transition matrix for any *m*. In particular, we have

$$\mathbf{P}^m = \exp\left\{\Lambda m\right\}$$

where exp denotes the *matrix exponential* function. This function is defined according to

$$\exp\left\{\mathbf{A}\right\} := \sum_{i=0}^{\infty} \frac{\mathbf{A}^{i}}{i!}$$

and it can be evaluated quickly using diagonalization methods. (You don't need to do that, however, as the Matlab function expm will calculate exp {A} for you.)

Estimate **P** using the methodology / theory described here.

(c) Which of the methods in (a) and (b) yields a superior estimator in your opinion? Justify your answer.

3. (Intensity Calculations)

We can define the default intensity, λ_t to be

$$\lambda_t := \frac{f_\tau(t)}{\mathbf{P}(\tau > t)}$$

where τ is the time of default and $f_{\tau}(\cdot)$ is the PDF of τ . It therefore follows that $\lambda_t dt$ is equal to the probability of defaulting in the interval (t, t + dt) given that default has not occurred in [0, t]. Show that

$$P(\tau > s) = \exp\left\{-\int_0^s \lambda_t \, dt\right\}.$$

4. (Constructing Intensity-Based Lattice Models)

Reproduce the three lattices on page 10 of the *Credit Modeling and Credit Derivatives* lecture notes. (The details are described in Section 4.1 of the notes.)

5. (Pricing a CDS in a Lattice Intensity Model)

Compute the fair spread of a CDS on the bond of Question 4 except now you should assume that the recovery upon default is 40% of face value. To simplify calculations you should assume that the premium leg makes a payment every period, i.e. year, and that the default leg pays the par amount, i.e. the face value of \$100, minus the recovery upon default.

Hint: See the final paragraph of Section 4.1 of the *Credit Modeling and Credit Derivatives* lecture notes to see how the fair spread can be calculated very quickly.