Assignment 6 (Mandatory)

1. (Polya's Urn)

Consider an urn which contains red balls and green balls. Initially there is just one green ball and one red ball in the urn. At each time step a ball is chosen randomly from the urn:
(a) If the ball is red, then it's returned to the urn with an additional red ball.
(b) If the ball is green, then it's returned to the urn with an additional green ball.

Let X_{n} denote the number of red balls in the urn after n draws. Then

$$
\begin{aligned}
\mathrm{P}\left(X_{n+1}=k+1 \mid X_{n}=k\right) & =\frac{k}{n+2} \\
\mathrm{P}\left(X_{n+1}=k \mid X_{n}=k\right) & =\frac{n+2-k}{n+2} .
\end{aligned}
$$

Show that $M_{n}:=X_{n} /(n+2)$ is a martingale.

2. (Brownian Motion and Geometric Brownian Motion)

Let W_{t} be a standard Brownian motion.
(a) What is $\mathrm{E}_{0}\left[W_{t+s} W_{s}\right]$?
(b) The geometric Brownian motion (GBM) model for a security price assumes its time t price is given by

$$
S_{t}=S_{0} e^{\left(\mu-\sigma^{2} / 2\right) t+\sigma W_{t}} .
$$

Compute $\mathrm{E}_{t}\left[S_{T}\right]$ where as usual $\mathrm{E}_{t}[\cdot]$ denotes the expectation conditional on all time t information.

3. (From Chapter 2 in Kerry Back's "A Course in Derivative Securities")

(a) Consider a discrete partition $0=t_{0}<t_{1}<\ldots<t_{N}=T$ of the time interval $[0, T]$ with $t_{i}-t_{i-1}=T / n$ for each i. Consider the function

$$
X(t)=e^{t} .
$$

Write a function (in Matlab, R or some other language of your choice) that takes T and N as inputs, and then computes and prints $\sum_{i=1}^{N}\left[\Delta X\left(t_{i}\right)\right]^{2}$, where

$$
\Delta X\left(t_{i}\right)=X\left(t_{i}\right)-X\left(t_{i-1}\right)=e^{t_{i}}-e^{t_{i-1}} .
$$

Hint: The sum can be computed as follows

```
sum = 0
For i = 1 To N
    DeltaX = Exp(iT/N) - Exp((i-1)T/N)
    sum = sum + DeltaX * DeltaX
Next i
```

(b) Repeat part (a) for the function $X(t)=t^{3}$. In both cases what happens to $\sum_{i=1}^{N}\left[\Delta X\left(t_{i}\right)\right]^{2}$ as $N \rightarrow \infty$, for a given T ?
(c) Repeat part (b) to compute $\sum_{i=1}^{N}\left[\Delta W\left(t_{i}\right)\right]^{2}$ where W is a simulated Brownian motion. For a given T, what happens to the sum as $N \rightarrow \infty$?
(d) Repeat part (c), computing instead $\sum_{i=1}^{N}\left|\Delta W\left(t_{i}\right)\right|$ where $|\cdot|$ denotes the absolute value. What happens to this sum as $N \rightarrow \infty$, for a given T ?
4. Use Itô's Lemma to prove that $\int_{0}^{t} W_{s}^{2} d W_{s}=\frac{W_{t}^{3}}{3}-\int_{0}^{t} W_{s} d s$.

5. (Oksendal Exercise 5.5)

(a) Solve the Ornstein-Uhlenbeck equation $d X_{t}=\mu X_{t} d t+\sigma d W_{t}$ where μ and σ are real constants. (Hint: Use the integrating factor $e^{-\mu t}$ and consider $d\left(e^{-\mu t} X_{t}\right)$.)
(b) Find:
(i) $\mathrm{E}\left[X_{t}\right]$
(ii) $\operatorname{Var}\left(X_{t}\right)$
(iii) $\operatorname{Cov}\left(X_{t}, X_{t+s}\right)$.

6. (Hedging Strategies)

Let $G: \Omega \rightarrow R$ be a random variable. Ignoring technical restrictions, we can write G as

$$
G=\mathrm{E}[G]+\int_{0}^{T} \theta_{s} d W_{s}
$$

By computing $\mathrm{E}_{t}[G]$ and then using Itô's Lemma, explicitly calculate the process, θ_{t}, for each of the following random variables, G.

Hint: Note that $M_{t}:=\mathrm{E}_{t}[G]$ is martingale for any integrable random variable, G. Now what does this tell you about the $d t$ term when you apply Itô's Lemma to M_{t} ?
(a) $G=1_{A}$ where $A=\left\{\exp \left(W_{T}\right)>K\right\}$.
(b) $G=W_{T}^{2}$.
(c) $G=\exp \left(a^{2} T+a W_{T}\right)$ for $a>0$.

