IEOR E4706 Foundations of Financial Engineering Martin Haugh

Assignment 6 (Mandatory)

1. (Polya's Urn)

Consider an urn which contains red balls and green balls. Initially there is just one green ball and one red ball in the urn. At each time step a ball is chosen randomly from the urn:

- (a) If the ball is red, then it's returned to the urn with an *additional* red ball.
- (b) If the ball is green, then it's returned to the urn with an *additional* green ball.

Let X_n denote the number of red balls in the urn after n draws. Then

$$P(X_{n+1} = k+1 | X_n = k) = \frac{k}{n+2}$$

$$P(X_{n+1} = k | X_n = k) = \frac{n+2-k}{n+2}.$$

Show that $M_n := X_n/(n+2)$ is a martingale.

2. (Brownian Motion and Geometric Brownian Motion)

Let W_t be a standard Brownian motion.

- (a) What is $E_0[W_{t+s}W_s]$?
- (b) The geometric Brownian motion (GBM) model for a security price assumes its time t price is given by

$$S_t = S_0 e^{(\mu - \sigma^2/2)t + \sigma W_t}.$$

Compute $E_t[S_T]$ where as usual $E_t[\cdot]$ denotes the expectation conditional on all time t information.

3. (From Chapter 2 in Kerry Back's "A Course in Derivative Securities")

(a) Consider a discrete partition $0 = t_0 < t_1 < \ldots < t_N = T$ of the time interval [0, T] with $t_i - t_{i-1} = T/n$ for each *i*. Consider the function

$$X(t) = e^t$$
.

Write a function (in Matlab, R or some other language of your choice) that takes T and N as inputs, and then computes and prints $\sum_{i=1}^{N} [\Delta X(t_i)]^2$, where

$$\Delta X(t_i) = X(t_i) - X(t_{i-1}) = e^{t_i} - e^{t_{i-1}}.$$

Hint: The sum can be computed as follows

sum = 0
For i = 1 To N
 DeltaX = Exp(iT/N) - Exp((i-1)T/N)
 sum = sum + DeltaX * DeltaX
Next i

- (b) Repeat part (a) for the function $X(t) = t^3$. In both cases what happens to $\sum_{i=1}^{N} [\Delta X(t_i)]^2$ as $N \to \infty$, for a given T?
- (c) Repeat part (b) to compute $\sum_{i=1}^{N} [\Delta W(t_i)]^2$ where W is a simulated Brownian motion. For a given T, what happens to the sum as $N \to \infty$?
- (d) Repeat part (c), computing instead $\sum_{i=1}^{N} |\Delta W(t_i)|$ where $|\cdot|$ denotes the absolute value. What happens to this sum as $N \to \infty$, for a given T?
- 4. Use Itô's Lemma to prove that $\int_0^t W_s^2 dW_s = \frac{W_t^3}{3} \int_0^t W_s ds$.

5. (Oksendal Exercise 5.5)

- (a) Solve the Ornstein-Uhlenbeck equation $dX_t = \mu X_t dt + \sigma dW_t$ where μ and σ are real constants. (Hint: Use the integrating factor $e^{-\mu t}$ and consider $d(e^{-\mu t}X_t)$.)
- (b) Find: (i) $E[X_t]$ (ii) $Var(X_t)$ (iii) $Cov(X_t, X_{t+s})$.

6. (Hedging Strategies)

Let $G: \Omega \to R$ be a random variable. Ignoring technical restrictions, we can write G as

$$G = \mathbf{E}[G] + \int_0^T \theta_s \ dW_s.$$

By computing $E_t[G]$ and then using Itô's Lemma, explicitly calculate the process, θ_t , for each of the following random variables, G.

Hint: Note that $M_t := E_t[G]$ is martingale for any integrable random variable, G. Now what does this tell you about the dt term when you apply Itô's Lemma to M_t ?

- (a) $G = 1_A$ where $A = \{\exp(W_T) > K\}.$
- (b) $G = W_T^2$.
- (c) $G = \exp(a^2T + aW_T)$ for a > 0.