IEOR E4706 Foundations of Financial Engineering Martin Haugh

Due: 5pm Friday 23^{rd} September 2016

Assignment 2 (Mandatory)

Examples 1, 2 and 7 in the questions below refer to the examples in the "Martingale Pricing Theory in Discrete-Time and Discrete-Space Models" lecture notes.

- 1. Build a 15-period binomial model whose parameters should be calibrated to a Black-Scholes geometric Brownian motion (GBM) model with: T = .25 years, $S_0 = 100$, r = 2%, $\sigma = 30\%$ and a dividend yield of c = 1%. *Hint: Your binomial model should use a value of u* = 1.0395. Now answer the following questions:
 - (a) Compute the price of an American call option with strike K = 110 and maturity T = .25 years.
 - (b) Compute the price of an American put option with strike K = 110 and maturity T = .25 years.
 - (c) Is it ever optimal to early exercise the put option of part (b)?
 - (d) If your answer to part (c) is "Yes", when is the earliest period at which it might be optimal to early exercise?
 - (e) Do the call and put option prices of parts (a) and (b) satisfy put-call parity? Why or why not?
- 2. Referring to Examples 1 and 2, show that

π_1	=	0	$+ \epsilon$	0.7372
π_2		0.3102		-0.5898
π_3		0.4113		-0.2949
π_4		0.2682		0.1474

is also a vector of state prices for any ϵ such that $\pi_i > 0$ for $1 \le i \le 4$.

- 3. What elementary securities are attainable in the model of Example 1? Is this model complete or incomplete? Explain your answer.
- 4. The single-period model of Example 7 is a complete market. Find the replicating portfolio for each of the elementary securities.
- 5. (a) Referring to Example 7, find a set of risk-neutral probabilities for the case where we take the 2^{nd} security as numeraire. (Recall that the cash account is the 0^{th} security so the 2^{nd} security is the security with price 2.4917 at date t = 0.)
 - (b) Are these risk-neutral probabilities unique? Explain your answer.
 - (c) Would we get the same set of risk-neutral probabilities if we used a different numeraire?